Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimality Criteria and Duality in Multiobjective Programming Involving Nonsmooth Invex Functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper a generalization of invexity is considered in a general form, by means of the concept of K-directional derivative. Then in the case of nonlinear multiobjective programming problems where the functions involved are nondifferentiable, we established sufficient optimality conditions without any convexity assumption of the K-directional derivative. Then we obtained some duality results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Antczak (2002) ArticleTitleMultiobjective programming under d-invexity European Journal of Operational Research 137 28–36 Occurrence Handle10.1016/S0377-2217(01)00092-3

    Article  Google Scholar 

  2. A. Ben-Israel B. Mond (1986) ArticleTitleWhat is invexity? Journal of the Australian Mathematical Society, Series B 28 1–9

    Google Scholar 

  3. M. Castellani (2001) ArticleTitleNonsmooth Invex functions and sufficient optimality conditions Journal of Mathematical Analysis and Application 255 319–232 Occurrence Handle10.1006/jmaa.2000.7263

    Article  Google Scholar 

  4. F.H. Clarke S. Ledyaev Yu. R.J. Stern P.R. Wolenski (1998) Nonsmooth Analysis and Control Theory Springer-Verlag New York

    Google Scholar 

  5. B.D. Craven (1981) ArticleTitleInvex functions and constrained local minima Bulletin of the Australian Mathematical society 24 357–366 Occurrence Handle10.1017/S0004972700004895

    Article  Google Scholar 

  6. B.D. Craven (1986) ArticleTitleOn quasidifferentiable optimization Journal of the Australian Mathematical Society, series A 41 64–78

    Google Scholar 

  7. K.H. Elster J. Thierfelder (1988) ArticleTitleAbstract cone approximations and generalized differentiability in nonsmooth optimization Optimization 19 IssueID3 315–341

    Google Scholar 

  8. M.A. Hanson (1981) ArticleTitleOn sufficiency of the Kuhn-Tucker conditions Journal of Mathematical Analysis and Application 80 545–550 Occurrence Handle10.1016/0022-247X(81)90123-2

    Article  Google Scholar 

  9. M.H. Kim G.M. Lee (2001) ArticleTitleOn duality theorem for nonsmooth Lipschitz optimization problems Journal of Optimization Theory and Application 110 IssueID3 669–675 Occurrence Handle10.1023/A:1017596530143

    Article  Google Scholar 

  10. D.S. Kim S. Schaible (2004) ArticleTitleOptimality and duality for invex nonsmooth multiobjective programming problems Optimization 53 IssueID2 165–176 Occurrence Handle10.1080/0233193042000209435

    Article  Google Scholar 

  11. H. Kuk G.M. Lee T. Tanino (2001) ArticleTitleOptimlity and duality for nonsmooth multiobjective fractional programming with generalized invexity Journal of Mathematical Analysis and Application 262 365–375 Occurrence Handle10.1006/jmaa.2001.7586

    Article  Google Scholar 

  12. J.C. Liu (1996) ArticleTitleOptimality and duality for generalized fractional programming involving nonsmooth pseudoinvex functions Journal of Mathematical Analysis and Application 202 667–685 Occurrence Handle10.1006/jmaa.1996.0341

    Article  Google Scholar 

  13. V. Lyall S.K. Suneja S. Aggarwal (1997) ArticleTitleFritz-John optimality and duality for nonsmooth programs Journal of Mathematical Analysis and Application 212 38–50 Occurrence Handle10.1006/jmaa.1997.5410

    Article  Google Scholar 

  14. T. Meda (1994) ArticleTitleConstraint qualifications in multiobjective optimization problems: Differentiable case Journal of Optimization Theory and Applications 80 IssueID3 483–500 Occurrence Handle10.1007/BF02207776

    Article  Google Scholar 

  15. R.R. Merkovsky D.E. Ward (1990) ArticleTitleGeneral constraint qualifications in nondifferentiable programming Mathematical Programming 47 389–405 Occurrence Handle10.1007/BF01580871

    Article  Google Scholar 

  16. S.K. Mishra R.N. Mukherjee (1996) ArticleTitleOn generalized convex multiobjective nonsmooth programming Journal of Australian Mathematical Society Series B 38 140–148 Occurrence Handle10.1017/S0334270000000515

    Article  Google Scholar 

  17. S.K. Mishra S.Y. Wang K.K. Lai (2004) ArticleTitleOptimality and duality in nondifferentiable and multiobjective programming under generalized d-invexity Journal of Global optimization 29 425–438 Occurrence Handle10.1023/B:JOGO.0000047912.69270.8c

    Article  Google Scholar 

  18. S.K. Mishra S.Y. Wang K.K. Lai (2005) ArticleTitleNondifferentiable multiobjective programming under generalized d-invexity European Journal of Operational Research 160 218–226 Occurrence Handle10.1016/S0377-2217(03)00439-9

    Article  Google Scholar 

  19. J.M. Ortega W.C. Rheinboldt (1970) Interative Solutuion of Nonlinear Equations in Several Variable Academic press New York/ London

    Google Scholar 

  20. V. Preda (2003) ArticleTitleOptimality and duality in fractional multiple objective programming involving semilocally preinvex and related functions Journal of Mathematical Analysis and Applications 288 362–382 Occurrence Handle10.1016/S0022-247X(02)00460-2

    Article  Google Scholar 

  21. S.K. Sunja S. Gupta (1998) ArticleTitleDuality in multiobjective nonlinear programming involving semilocally convex and related functions European Journal of Operational Research 107 675–685 Occurrence Handle10.1016/S0377-2217(98)80003-9

    Article  Google Scholar 

  22. D.E. Ward G.M. Lee (2001) ArticleTitleGeneralized properly solutions of vector optimization problems Mathematical Methods of Operation Research 53 215–232 Occurrence Handle10.1007/s001860100112

    Article  Google Scholar 

  23. T. Weir B. Mond (1981) Generalized convexity and duality S. Schaible W.T. Ziemba (Eds) Generalized Concavity in Optimization and Economics. Academic press New York 263–280

    Google Scholar 

  24. T. Weir B. Mond (1988) ArticleTitlePre-invex functions in multiobjective optimization Journal of Mathematical Analysis and Application 136 29–38 Occurrence Handle10.1016/0022-247X(88)90113-8

    Article  Google Scholar 

  25. P. Wolfe (1961) ArticleTitleA duality theorem for nonlinear programming Quarterly of Applied Mathematics 19 239–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nobakhtian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobakhtian, S. Optimality Criteria and Duality in Multiobjective Programming Involving Nonsmooth Invex Functions. J Glob Optim 35, 593–606 (2006). https://doi.org/10.1007/s10898-005-5320-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-005-5320-4

Keywords

Mathematics Subject Classifications (2000)