Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pyramidal tours and multiple objectives

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this study, we work on the traveling salesperson problems and bottleneck traveling salesperson problems that have special matrix structures and lead to polynomially solvable cases. We extend the problems to multiple objectives and investigate the properties of the nondominated points. We develop a pseudo-polynomial time algorithm to find a nondominated point for any number of objectives. Finally, we propose an approach to generate all nondominated points for the biobjective case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aneja Y.P., Nair K.P.: Bicriteria transportation problem. Manage. Sci. 25(1), 73–78 (1979)

    Article  Google Scholar 

  • Baki M.F.: A new asymmetric pyramidally solvable class of the traveling salesman problem. Oper. Res. Lett. 34(6), 613–620 (2006)

    Article  Google Scholar 

  • Burkard R.E., Deineko V.G.: On the Euclidean TSP with permuted Van Der Veen Matrix. Inf. Process. Lett. 91, 259–262 (2004)

    Article  Google Scholar 

  • Burkard R.E., Sandholzer W.: Efficiently solvable special cases of bottleneck traveling salesman problems. Dis. Appl. Math. 32, 61–76 (1991)

    Article  Google Scholar 

  • Burkard R.E., Klinz B., Rudolf R.: Perspectives of Monge properties in optimization. Dis. Appl. Math. 70, 95–161 (1996)

    Article  Google Scholar 

  • Burkard R.E., Deineko V.G., Van Dal R., Van der Veen J.A.A., Woeginger G.J.: Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40(3), 496–546 (1998)

    Article  Google Scholar 

  • Ehrgott M., Gandibleux X.: Multiobjective combinatorial optimization—theory, methodology, and applications. In: Ehrgott, M. (eds) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 369–444. Kluwer, Secaucus (2002)

    Google Scholar 

  • Gilmore R.C., Lawler E.L., Shmoys D.B.: Well-solved special cases. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds) The Traveling Salesman Problem, pp. 87–143. Wiley, Chichester (1985)

    Google Scholar 

  • Gutin G., Yeo A., Zverovitch A.: Exponential neighborhoods and domination analysis for the TSP. In: Gutin, G., Punnen, A.P. (eds) The Traveling Salesman Problem and Its Variations, pp. 223–256. Kluwer, Dordrecht (2002)

    Google Scholar 

  • Kabadi S.N.: Polynomially solvable cases of the TSP. In: Gutin, G., Punnen, A.P. (eds) The Traveling Sales- man Problem and Its Variations, pp. 489–583. Kluwer, Dordrecht (2002)

    Google Scholar 

  • Oda Y.: An asymmetric analog of van der Veen conditions and the traveling salesman problem (II). Eur. J. Oper. Res. 138(1), 43–62 (2002)

    Article  Google Scholar 

  • Özpeynirci Ö., Köksalan M.: Multiobjective traveling salesperson problem on Halin graphs. Eur. J. Oper. Res. 196(1), 155–161 (2009)

    Article  Google Scholar 

  • Steuer R.E.: Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986)

    Google Scholar 

  • Van Dal R., Van der Veen J.A.A., Sierksma G.: Small and large TSP—2 polynomially solvable cases of the traveling salesman problem. Eur. J. Oper. Res. 69(1), 107–120 (1993)

    Article  Google Scholar 

  • Van der Veen J.A.A.: A new class of pyramidally solvable symmetric traveling salesman problems. SIAM J. Dis. Math. 7, 585–592 (1994)

    Article  Google Scholar 

  • Van der Veen J.A.A., Sierksma G., Van Dal R.: Pyramidal tours and the traveling salesman problem. Eur. J. Oper. Res. 51(1), 90–102 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Özpeynirci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özpeynirci, Ö., Köksalan, M. Pyramidal tours and multiple objectives. J Glob Optim 48, 569–582 (2010). https://doi.org/10.1007/s10898-009-9505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9505-0

Keywords