Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, an extragradient-type method is introduced for finding a common element in the solution set of generalized equilibrium problems, in the solution set of classical variational inequalities and in the fixed point set of strictly pseudocontractive mappings. It is proved that the iterative sequence generated in the purposed extragradient-type iterative process converges weakly to some common element in real Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acedo G.L., Xu H.K.: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67, 2258–2271 (2007)

    Article  Google Scholar 

  2. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  Google Scholar 

  3. Browder F.E., Petryshyn W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  Google Scholar 

  4. Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud 63, 123–145 (1994)

    Google Scholar 

  5. Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    Google Scholar 

  6. Chinchuluun A., Migdalas A., Pardalos P.M., Pitsoulis L.: Pareto Optimality. Game Theory and Equilibria. Springer, Newyork (2008)

    Book  Google Scholar 

  7. Giannessi F., Pardalos P.M., Rapcsak T.: New Trends in Equilibrium Systems. Kluwer Academic Publishers, Dodrecht (2001)

    Google Scholar 

  8. Iiduka H., Takahashi W.: Weak convergence theorem by Cesàro means for nonexpansive mappings and inverse-strongly monotone mappings. J. Nonlinear Convex Anal. 7, 105–113 (2006)

    Google Scholar 

  9. Iiduka H., Takahashi W., Toyoda M.: Approximation of solutions of variational inequalities for monotone mappings. PanAmer. Math. J. 14, 49–61 (2004)

    Google Scholar 

  10. Jaiboon C., Kumam P., Humphries U.W.: Weak convergence theorem by an extragradient method for variational inequality, equalibrium and fixed point problems. Bull. Malays. Math. Sci. Soc. 32, 131–136 (2009)

    Google Scholar 

  11. Kumam P., Petrot N., Wangkeeree R.: A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions. J. Comput. Appl. Math. 233, 2013–2026 (2010)

    Article  Google Scholar 

  12. Marino G., Xu H.K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336–346 (2007)

    Article  Google Scholar 

  13. Moudafi A.: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear Convex Anal. 9, 37–43 (2008)

    Google Scholar 

  14. Nilsrakooa W., Saejung S.: Weak and strong convergence theorems for countable Lipschitzian mappings and its applications. Nonlinear Anal. 69, 2695–2708 (2008)

    Article  Google Scholar 

  15. Nadezhkina N., Takahashi W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)

    Article  Google Scholar 

  16. Opial Z.: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  Google Scholar 

  17. Plubtieng S., Kumam P.: Weak convergence theorem for monotone mappings and a countable family of nonexpansive mappings. J. Comput. Appl. Math. Nonlinear Anal. 224, 614–621 (2009)

    Google Scholar 

  18. Peng J.W., Yao J.C.: Weak convergence of an iterative scheme for generalized equilibrium problems. Bull. Austral. Math. Soc. 79, 437–453 (2009)

    Article  Google Scholar 

  19. Qin X., Cho Y.J., Kang S.M.: Viscosity approximation methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal. 72, 99–112 (2010)

    Article  Google Scholar 

  20. Qin X., Cho Y.J., Kang S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20–30 (2009)

    Article  Google Scholar 

  21. Rockafellar R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149, 75–88 (1970)

    Article  Google Scholar 

  22. Schu J.: Weak and strong convergence of fixed points of asymptotically nonexpansive mappings. Bull. Austral. Math. Soc. 43, 153–159 (1991)

    Article  Google Scholar 

  23. Tada A., Takahashi W.: Weak and strong convergence theorems for a nonexpansive mappings and an equilibrium problem. J. Optim. Theory Appl. 133, 359–370 (2007)

    Article  Google Scholar 

  24. Takahashi W., Toyoda M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  Google Scholar 

  25. Takahashi W., Zembayashi K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45–57 (2009)

    Article  Google Scholar 

  26. Wattanawitoon K., Kumam P.: Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings. Nonlinear Anal. 3, 11–20 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Min Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Cho, S.Y. & Kang, S.M. An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings. J Glob Optim 49, 679–693 (2011). https://doi.org/10.1007/s10898-010-9556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9556-2

Keywords

Mathematics Subject Classification (2000)