Abstract
We propose in this paper novel global descent methods for unconstrained global optimization problems to attain the global optimality by carrying out a series of local minimization. More specifically, the solution framework consists of a two-phase cycle of local minimization: the first phase implements local search of the original objective function, while the second phase assures a global descent of the original objective function in the steepest descent direction of a (quasi) global descent function. The key element of global descent methods is the construction of the (quasi) global descent functions which possess prominent features in guaranteeing a global descent.
Similar content being viewed by others
References
Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable NLPs—II. implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)
Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice-differentiable NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)
Alefeld G., Herzberger J.: Introduction to Interval Computations. Academic Press, New York (1983)
Androulakis I.P., Maranas C.D., Floudas C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)
Branin F.H.: Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Dev. 16, 504–522 (1972)
Cetin B.C., Barhen J., Burdick J.W.: Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization. J. Optim. Appl. 77(1), 97–126 (1993)
Chowdhury P.R., Singh Y.P., Chansarkar R.A.: Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization. IEEE Trans. Syst. Man Cybern. A 30(3), 384–390 (2000)
Dixon L.C.W., Szegö G.P.: Towards Global Optimization, Vol. 1. North-Holland, Amsterdam (1975)
Dixon L.C.W., Szegö G.P.: Towards Global Optimization, Vol. 2. North-Holland, Amsterdam (1978)
Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)
Floudas C.A., Visweswaran V.: A primal-relaxed dual global optimization approach. J Optim. Theory Appl. 78(2), 187–225 (1993)
Ge R.P.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46, 191–204 (1990)
Ge R.P.: The globally convexized filled functions for global optimization. Appl. Math. Comput. 35, 131–158 (1990)
Goldstein A.A., Price J.F.: On descent from local minima. Math. Comput. 25(115), 569–574 (1971)
Hansen E.R.: Global Optimization Using Interval Analysis. Dekker, New York (1992)
Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization. Kluwer, Dordrecht (1995)
Horst, R., Pardalos, P.M., Thoai, N.V. (eds): Introduction to Global Optimization, 2nd Edn. Kluwer, Dordrecht (2000)
Levy A.V., Montalvo A.: The tunneling algorithm for the global minimization of functions. SIAM J. Sci. Stat. Comput. 6(1), 15–29 (1985)
Li D., Sun X.L., Biswal M.P., Gao F.: Convexification, concavification and monotonization in global minimization. Ann. Oper. Res. 105, 213–226 (2001)
Liu X.: Finding global minimia with a computable filled function. J. Glob. Optim. 19, 151–161 (2001)
Liu X.: Several filled functions with mitigators. Appl. Math. Comput. 133, 375–387 (2002)
Liu X.: A class of genaralilized filled functions with improved computability. J. Comput. Appl. Math. 137, 62–69 (2001)
Lucidi S., Piccioni M.: Random tunneling by means of acceptance-rejection sampling for global optimization. J. Optim. Theory Appl. 62(2), 255–277 (1989)
Lucidi S., Piccialli V.: New classes of global convexized filled functions for global optimization. J. Glob. Optim. 24, 219–236 (2002)
Maranas C.D., Floudas C.A.: Global minimum potential energy conformations of small molecules. J. Glob. Optim. 4(2), 135–170 (1994)
Moore R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
Moore R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Pardalos, P.M., Romeijn, H. Edwin (eds): Handbook of Global Optimization, Vol. 2. Kluwer, Dordrecht (2002)
Pardalos P.M., Edwin Romeijn H., Tuy H.: Recent development and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)
Rastrigin L.: Systems of Extremal Control. Nauka, Moscow (1974)
Sun X.L., McKinnon K.I.M., Li D.: Convexification method for a class of global optimization problems with applications to reliability optimization. J. Glob. Optim. 21(2), 185–199 (2001)
Wu Z.Y., Lee H.W.J., Zhang L.S., Yang X.M.: A novel filled function method and quasi-filled function method for global optimization. J. Comput. Optim. Appl. 34(2), 249–272 (2006)
Xu Z., Huang H.X., Pardalos P.M.: Filled functions for unconstrained global optimization. J. Glob. Optim. 20, 49–65 (2001)
Yao Y.: Dynamic tunneling algorithm for global optimization. IEEE Trans. Syst. Man Cybern. 19(5), 1222–1230 (1989)
Zhang L.S., Ng C.K., Li D., Tian W.W.: A new filled function method for global optimization. J. Glob. Optim. 28, 17–43 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, Z.Y., Li, D. & Zhang, L.S. Global descent methods for unconstrained global optimization. J Glob Optim 50, 379–396 (2011). https://doi.org/10.1007/s10898-010-9587-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-010-9587-8