Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Global descent methods for unconstrained global optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose in this paper novel global descent methods for unconstrained global optimization problems to attain the global optimality by carrying out a series of local minimization. More specifically, the solution framework consists of a two-phase cycle of local minimization: the first phase implements local search of the original objective function, while the second phase assures a global descent of the original objective function in the steepest descent direction of a (quasi) global descent function. The key element of global descent methods is the construction of the (quasi) global descent functions which possess prominent features in guaranteeing a global descent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable NLPs—II. implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

    Article  Google Scholar 

  2. Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice-differentiable NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  3. Alefeld G., Herzberger J.: Introduction to Interval Computations. Academic Press, New York (1983)

    Google Scholar 

  4. Androulakis I.P., Maranas C.D., Floudas C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  Google Scholar 

  5. Branin F.H.: Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Dev. 16, 504–522 (1972)

    Article  Google Scholar 

  6. Cetin B.C., Barhen J., Burdick J.W.: Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization. J. Optim. Appl. 77(1), 97–126 (1993)

    Article  Google Scholar 

  7. Chowdhury P.R., Singh Y.P., Chansarkar R.A.: Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization. IEEE Trans. Syst. Man Cybern. A 30(3), 384–390 (2000)

    Article  Google Scholar 

  8. Dixon L.C.W., Szegö G.P.: Towards Global Optimization, Vol. 1. North-Holland, Amsterdam (1975)

    Google Scholar 

  9. Dixon L.C.W., Szegö G.P.: Towards Global Optimization, Vol. 2. North-Holland, Amsterdam (1978)

    Google Scholar 

  10. Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  11. Floudas C.A., Visweswaran V.: A primal-relaxed dual global optimization approach. J Optim. Theory Appl. 78(2), 187–225 (1993)

    Article  Google Scholar 

  12. Ge R.P.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46, 191–204 (1990)

    Article  Google Scholar 

  13. Ge R.P.: The globally convexized filled functions for global optimization. Appl. Math. Comput. 35, 131–158 (1990)

    Article  Google Scholar 

  14. Goldstein A.A., Price J.F.: On descent from local minima. Math. Comput. 25(115), 569–574 (1971)

    Article  Google Scholar 

  15. Hansen E.R.: Global Optimization Using Interval Analysis. Dekker, New York (1992)

    Google Scholar 

  16. Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization. Kluwer, Dordrecht (1995)

    Google Scholar 

  17. Horst, R., Pardalos, P.M., Thoai, N.V. (eds): Introduction to Global Optimization, 2nd Edn. Kluwer, Dordrecht (2000)

    Google Scholar 

  18. Levy A.V., Montalvo A.: The tunneling algorithm for the global minimization of functions. SIAM J. Sci. Stat. Comput. 6(1), 15–29 (1985)

    Article  Google Scholar 

  19. Li D., Sun X.L., Biswal M.P., Gao F.: Convexification, concavification and monotonization in global minimization. Ann. Oper. Res. 105, 213–226 (2001)

    Article  Google Scholar 

  20. Liu X.: Finding global minimia with a computable filled function. J. Glob. Optim. 19, 151–161 (2001)

    Article  Google Scholar 

  21. Liu X.: Several filled functions with mitigators. Appl. Math. Comput. 133, 375–387 (2002)

    Article  Google Scholar 

  22. Liu X.: A class of genaralilized filled functions with improved computability. J. Comput. Appl. Math. 137, 62–69 (2001)

    Article  Google Scholar 

  23. Lucidi S., Piccioni M.: Random tunneling by means of acceptance-rejection sampling for global optimization. J. Optim. Theory Appl. 62(2), 255–277 (1989)

    Article  Google Scholar 

  24. Lucidi S., Piccialli V.: New classes of global convexized filled functions for global optimization. J. Glob. Optim. 24, 219–236 (2002)

    Article  Google Scholar 

  25. Maranas C.D., Floudas C.A.: Global minimum potential energy conformations of small molecules. J. Glob. Optim. 4(2), 135–170 (1994)

    Article  Google Scholar 

  26. Moore R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  27. Moore R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Google Scholar 

  28. Pardalos, P.M., Romeijn, H. Edwin (eds): Handbook of Global Optimization, Vol. 2. Kluwer, Dordrecht (2002)

    Google Scholar 

  29. Pardalos P.M., Edwin Romeijn H., Tuy H.: Recent development and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  Google Scholar 

  30. Rastrigin L.: Systems of Extremal Control. Nauka, Moscow (1974)

    Google Scholar 

  31. Sun X.L., McKinnon K.I.M., Li D.: Convexification method for a class of global optimization problems with applications to reliability optimization. J. Glob. Optim. 21(2), 185–199 (2001)

    Article  Google Scholar 

  32. Wu Z.Y., Lee H.W.J., Zhang L.S., Yang X.M.: A novel filled function method and quasi-filled function method for global optimization. J. Comput. Optim. Appl. 34(2), 249–272 (2006)

    Article  Google Scholar 

  33. Xu Z., Huang H.X., Pardalos P.M.: Filled functions for unconstrained global optimization. J. Glob. Optim. 20, 49–65 (2001)

    Article  Google Scholar 

  34. Yao Y.: Dynamic tunneling algorithm for global optimization. IEEE Trans. Syst. Man Cybern. 19(5), 1222–1230 (1989)

    Article  Google Scholar 

  35. Zhang L.S., Ng C.K., Li D., Tian W.W.: A new filled function method for global optimization. J. Glob. Optim. 28, 17–43 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z.Y., Li, D. & Zhang, L.S. Global descent methods for unconstrained global optimization. J Glob Optim 50, 379–396 (2011). https://doi.org/10.1007/s10898-010-9587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9587-8

Keywords