Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tabu search for the BWC problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Given a graph G and positive integers B and W, the BWC problem asks about the existence of a coloring of G, with B black and W white vertices, such that there is no edge between a black and a white vertex. We suggest a heuristic, based on tabu search, which yields quite good results for this problem. We compare the performance of our algorithm to that of several other known heuristics, and also to what one might expect based on some theoretical results we obtained for the checked graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvim A.C.F., Ribeiro C.C., Glover F., Aloise D.J.: A hybrid improvement heuristic for the one-dimensional bin packing problem. J. Heuristics 10, 205–229 (2004)

    Article  Google Scholar 

  2. Alabas, C., Altiparmak, F., Dengiz, B.: The optimization of number of kanbans with genetic algorithms, simulated annealing and tabu search. In: Proceedings of the 2000 Congress on Evolutionary Computation CEC00, pp. 580–585. IEEE Press (2000)

  3. Barr B.L., Golden J.P., Kelly J.P., Resende M.G.C., Stewart W.R.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1, 9–32 (1995)

    Article  Google Scholar 

  4. Berend D., Korach E., Zucker S.: Anticoloring of a family of grid graphs. Discret. Optim. 5/3, 647–662 (2008)

    Article  Google Scholar 

  5. Berend, D., Korach, E., Zucker, S.: Two-anticoloring of planar and related graphs. In: DMTCS Proceedings, AD:335–342. URL:http://www.dmtcs.org/pdfpapers/dmAD0130.pdf (2005)

  6. Berend D., Korach E., Zucker S.: A reduction of the anticoloring problem to connected graphs. Electron. Notes Discret. Math. 28, 445–451 (2006)

    Article  Google Scholar 

  7. Berend, D., Korach, E., Zucker, S.: Anticoloring and separation of graphs. Discret. Math. (accepted for publication)

  8. Berend, D., Zucker, S.: The black-and-white coloring problem on trees. J. Graph Algorithm. Appl. (accepted for publication)

  9. Bodirsky, M., Gropl, C., Kang, M.: Generating labeled planar graphs uniformly at random (2007). URL:http://www.informatik.hu-berlin.de/~bodirsky/publications/planar.ps

  10. Bray, N.: From mathworld—a wolfram web resource, created by Weisstein, E.W. URL:http://www.mathworld.wolfram.com/GraphStrongProduct.html

  11. Černý V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

    Article  Google Scholar 

  12. Comtet L.: Bonferroni inequalities. Advanced Combinatorics: The Art of Finite and Infinite Expansions, pp. 193–194. Springer, Berlin (1974)

    Google Scholar 

  13. Djidjev H., Venkatesan S.: Reduced constants for simple cycle graph separation. Acta Inform. 34/3, 231–243 (1997)

    Article  Google Scholar 

  14. Denise, A., Vasconcellos, M., Welsh, D.J.A.: The random planar graph. Congr. Numerantium 113, 61–79 (1996) URL:http://www.citeseer.ist.psu.edu/denise96random.html

    Google Scholar 

  15. Feo T.A., Resende M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)

    Article  Google Scholar 

  16. Glover F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

    Article  Google Scholar 

  17. Glover F., McMillan C., Novick B.: Interactive decision software and computer graphics for architectural and space planning. Ann. Oper. Res. 5, 557–573 (1985)

    Article  Google Scholar 

  18. Glover F.: Tabu search: part one. ORSA J. Comput. 1, 190–206 (1989)

    Article  Google Scholar 

  19. Glover F.: Tabu search: part two. ORSA J. Comput. 2, 4–32 (1990)

    Article  Google Scholar 

  20. Glover F., Laguna M.: Tabu search. Kluwer, Boston, Mass (1997)

    Book  Google Scholar 

  21. Gerke, S., Schlatter, D., Steger, A., Taraz, A.: The Random Planar Graph Process, preprint. URL:http://www-m9.ma.tum.de/~taraz/paper/rpgp.pdf

  22. Hansen P., Hertz A., Quinodoz N.: Splitting trees. Discret. Math. 165/6, 403–419 (1997)

    Article  Google Scholar 

  23. Hart J.P., Shogan A.W.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–114 (1987)

    Article  Google Scholar 

  24. Hertz A.: Tabu search for large scale timetabling problems. Eur. J. Oper. Res. 54, 39–47 (1991)

    Article  Google Scholar 

  25. Hertz A., Laporte G., Mittaz M.: A tabu search heuristic for the capacitated arc routing problem. Oper. Res. 48(1), 129–135 (2000)

    Article  Google Scholar 

  26. Hertz, A., Taillard, E., de Werra, D.: A tutorial on tabu search. In: Proceedings of Giornate di Lavoro AIRO’95 (Entreprise Systems: Management of Technological and Organizational Changes) pp. 13–24 (1995)

  27. Hertz A., de Werra D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)

    Article  Google Scholar 

  28. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. American Mathematical Society (2002)

  29. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220/4598:671–680 (1983) URL:http://www.citeseer.ist.psu.edu/kirkpatrick83optimization.html

    Google Scholar 

  30. Kobler, D., Korach, E., Hertz, A.: On black-and-white colorings, anticolorings and extensions, preprint

  31. Lipton R.J., Tarjan R.E.: A separator theorem for planar graphs. Appl. Math. 36/2, 177–189 (1979)

    Google Scholar 

  32. Berkelaar, M.: LPSOLVE package. URL:http://www.lpsolve.sourceforge.net

  33. McKay, B., Brinkmann, G.: A useful planar graph generator (2001). URL:http://cs.anu.edu.au/~bdm/plantri/

  34. Mooney, E.L., Rardin, R.L.: Tabu search for a class of scheduling problems. Ann. Oper. Res. (issue of Tabu Search) (1995)

  35. Pitsoulis L.S., Resende M.G.C.: Greedy randomized adaptive search procedure, pp. 178–183. Oxford University Press, Oxford (2002)

    Google Scholar 

  36. Skorin-Kapov J.: Tabu search applied to the quadratic assignment problem. ORSA J. Comput. 1 2, 33–45 (1990)

    Article  Google Scholar 

  37. Tomlab, Matlab: The tomlab optimization environment. URL:http://www.tomopt.com/tomlab

  38. Weisstein, E.W.: From mathworld—a wolfram web resource. http://www.mathworld.wolfram.com/CartesianProduct.html

  39. Yahalom, O.: Anticoloring problems on graphs. M.Sc. Thesis, Ben-Gurion University (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shira Zucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berend, D., Korach, E. & Zucker, S. Tabu search for the BWC problem. J Glob Optim 54, 649–667 (2012). https://doi.org/10.1007/s10898-011-9783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9783-1

Keywords