Abstract
Given a graph G and positive integers B and W, the BWC problem asks about the existence of a coloring of G, with B black and W white vertices, such that there is no edge between a black and a white vertex. We suggest a heuristic, based on tabu search, which yields quite good results for this problem. We compare the performance of our algorithm to that of several other known heuristics, and also to what one might expect based on some theoretical results we obtained for the checked graphs.
Similar content being viewed by others
References
Alvim A.C.F., Ribeiro C.C., Glover F., Aloise D.J.: A hybrid improvement heuristic for the one-dimensional bin packing problem. J. Heuristics 10, 205–229 (2004)
Alabas, C., Altiparmak, F., Dengiz, B.: The optimization of number of kanbans with genetic algorithms, simulated annealing and tabu search. In: Proceedings of the 2000 Congress on Evolutionary Computation CEC00, pp. 580–585. IEEE Press (2000)
Barr B.L., Golden J.P., Kelly J.P., Resende M.G.C., Stewart W.R.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1, 9–32 (1995)
Berend D., Korach E., Zucker S.: Anticoloring of a family of grid graphs. Discret. Optim. 5/3, 647–662 (2008)
Berend, D., Korach, E., Zucker, S.: Two-anticoloring of planar and related graphs. In: DMTCS Proceedings, AD:335–342. URL:http://www.dmtcs.org/pdfpapers/dmAD0130.pdf (2005)
Berend D., Korach E., Zucker S.: A reduction of the anticoloring problem to connected graphs. Electron. Notes Discret. Math. 28, 445–451 (2006)
Berend, D., Korach, E., Zucker, S.: Anticoloring and separation of graphs. Discret. Math. (accepted for publication)
Berend, D., Zucker, S.: The black-and-white coloring problem on trees. J. Graph Algorithm. Appl. (accepted for publication)
Bodirsky, M., Gropl, C., Kang, M.: Generating labeled planar graphs uniformly at random (2007). URL:http://www.informatik.hu-berlin.de/~bodirsky/publications/planar.ps
Bray, N.: From mathworld—a wolfram web resource, created by Weisstein, E.W. URL:http://www.mathworld.wolfram.com/GraphStrongProduct.html
Černý V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)
Comtet L.: Bonferroni inequalities. Advanced Combinatorics: The Art of Finite and Infinite Expansions, pp. 193–194. Springer, Berlin (1974)
Djidjev H., Venkatesan S.: Reduced constants for simple cycle graph separation. Acta Inform. 34/3, 231–243 (1997)
Denise, A., Vasconcellos, M., Welsh, D.J.A.: The random planar graph. Congr. Numerantium 113, 61–79 (1996) URL:http://www.citeseer.ist.psu.edu/denise96random.html
Feo T.A., Resende M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)
Glover F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)
Glover F., McMillan C., Novick B.: Interactive decision software and computer graphics for architectural and space planning. Ann. Oper. Res. 5, 557–573 (1985)
Glover F.: Tabu search: part one. ORSA J. Comput. 1, 190–206 (1989)
Glover F.: Tabu search: part two. ORSA J. Comput. 2, 4–32 (1990)
Glover F., Laguna M.: Tabu search. Kluwer, Boston, Mass (1997)
Gerke, S., Schlatter, D., Steger, A., Taraz, A.: The Random Planar Graph Process, preprint. URL:http://www-m9.ma.tum.de/~taraz/paper/rpgp.pdf
Hansen P., Hertz A., Quinodoz N.: Splitting trees. Discret. Math. 165/6, 403–419 (1997)
Hart J.P., Shogan A.W.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–114 (1987)
Hertz A.: Tabu search for large scale timetabling problems. Eur. J. Oper. Res. 54, 39–47 (1991)
Hertz A., Laporte G., Mittaz M.: A tabu search heuristic for the capacitated arc routing problem. Oper. Res. 48(1), 129–135 (2000)
Hertz, A., Taillard, E., de Werra, D.: A tutorial on tabu search. In: Proceedings of Giornate di Lavoro AIRO’95 (Entreprise Systems: Management of Technological and Organizational Changes) pp. 13–24 (1995)
Hertz A., de Werra D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)
Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. American Mathematical Society (2002)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220/4598:671–680 (1983) URL:http://www.citeseer.ist.psu.edu/kirkpatrick83optimization.html
Kobler, D., Korach, E., Hertz, A.: On black-and-white colorings, anticolorings and extensions, preprint
Lipton R.J., Tarjan R.E.: A separator theorem for planar graphs. Appl. Math. 36/2, 177–189 (1979)
Berkelaar, M.: LPSOLVE package. URL:http://www.lpsolve.sourceforge.net
McKay, B., Brinkmann, G.: A useful planar graph generator (2001). URL:http://cs.anu.edu.au/~bdm/plantri/
Mooney, E.L., Rardin, R.L.: Tabu search for a class of scheduling problems. Ann. Oper. Res. (issue of Tabu Search) (1995)
Pitsoulis L.S., Resende M.G.C.: Greedy randomized adaptive search procedure, pp. 178–183. Oxford University Press, Oxford (2002)
Skorin-Kapov J.: Tabu search applied to the quadratic assignment problem. ORSA J. Comput. 1 2, 33–45 (1990)
Tomlab, Matlab: The tomlab optimization environment. URL:http://www.tomopt.com/tomlab
Weisstein, E.W.: From mathworld—a wolfram web resource. http://www.mathworld.wolfram.com/CartesianProduct.html
Yahalom, O.: Anticoloring problems on graphs. M.Sc. Thesis, Ben-Gurion University (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berend, D., Korach, E. & Zucker, S. Tabu search for the BWC problem. J Glob Optim 54, 649–667 (2012). https://doi.org/10.1007/s10898-011-9783-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9783-1