Abstract
In this paper, two kinds of parametric generalized vector equilibrium problems in normed spaces are studied. The sufficient conditions for the continuity of the solution mappings to the two kinds of parametric generalized vector equilibrium problems are established under suitable conditions. The results presented in this paper extend and improve some main results in Chen and Gong (Pac J Optim 3:511–520, 2010), Chen and Li (Pac J Optim 6:141–152, 2010), Chen et al. (J Glob Optim 45:309–318, 2009), Cheng and Zhu (J Glob Optim 32:543–550, 2005), Gong (J Optim Theory Appl 139:35–46, 2008), Li and Fang (J Optim Theory Appl 147:507–515, 2010), Li et al. (Bull Aust Math Soc 81:85–95, 2010) and Peng et al. (J Optim Theory Appl 152(1):256–264, 2011).
Similar content being viewed by others
References
Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)
Anh L.Q., Khanh P.Q.: Continuity of solution maps of parametric quasiequilibrium problems. J. Glob. Optim. 46, 247–259 (2010)
Anh L.Q., Khanh P.Q.: Various kinds of semicontinuity of the solution sets of parametric multivalued symmetric vector quasiequilibrium problems. J. Glob. Optim. 41, 539–558 (2008)
Ansari Q.H.: Existence of solutions of systems of generalized implicit vector quasi-equilibrium problems. J. Math. Anal. Appl. 341, 1271–1283 (2008)
Ansari Q.H., Konnov I.V., Yao J.C.: Existence of a solution and variational principles for vector equilibrium problems. J. Optim. Theory Appl. 110, 481–492 (2001)
Berge C.: Topological Spaces. Oliver and Boyd, London (1963)
Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Chai, Y.F., Cho, Y.J., Li, J.: Some characterizations of ideal point in vector optimization problems. J. Inequal. Appl. 2008(231845):10 (2008)
Chen B., Gong X.H.: Continuity of the solution set to parametric set-valued weak vector equilibrium problems. Pac. J. Optim. 3, 511–520 (2010)
Chen, B., Gong, X.H., Yuan, S.M.: Connectedness and compactness of weak efficient solutions for set-valued vector equilibrium problems. J. Inequal. Appl. 2008(581849):15 (2008)
Chen C.R., Li S.J.: On the solution continuity of parametric generalized systems. Pac. J. Optim. 6, 141–152 (2010)
Chen C.R., Li S.J., Teo K.L.: Solution semicontinuity of parametric generalized vector equilibrium problems. J. Glob. Optim. 45, 309–318 (2009)
Chen C.R., Li S.J., Fang Z.M.: On the solution semicontinuity to a parametric generalized vector quasivariational inequality. Comput. Math. Appl. 60, 2417–2425 (2010)
Chen G.Y.: Existence of solutions for a vector variational inequality: an extension of Hartman-Stampacchia theorem. J. Optim. Theory Appl. 74, 445–456 (1992)
Chen G.Y., Huang X.X., Yang X.Q.: Vector Optimization: Set-Valued and Variational Analysis, vol. 541 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2005)
Chen J.W., Cho Y.J., Kim J.K., Li J.: Multiobjective optimization problems with modified objective functions and cone constraints and applications. J. Glob. Optim. 49, 137–147 (2011)
Cheng Y.H., Zhu D.L.: Global stability results for the weak vector variational inequality. J. Glob. Optim. 32, 543–550 (2005)
Fan K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)
Fang Y.P., Huang N.J.: Feasibility and solvability of vector variational inequalities with moving cones in Banach spaces. Nonlinear Anal. 70, 2024–2034 (2009)
Ferro F.: A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19–31 (1989)
Giannessi F.: Theorems of the alternative quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds) Variational Inequalities and Complementarity Problems, Wiley, New York (1980)
Gong X.H.: Continuity of the solution set to parametric weak vector equilibrium problems. J. Optim. Theory Appl. 139, 35–46 (2008)
Gong X.H.: Strong vector equilibrium problems. J. Global. Optim. 36, 339–349 (2006)
Gong X.H., Yao J.C.: Lower semicontinuity of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 197–205 (2008)
Huang N.J., Fang Y.P.: On vector variational-like inequalities in reflexive Banach spaces. J. Glob. Optim. 32, 495–505 (2005)
Huang N.J., Li J., Thompson H.B.: Stability for parametric implicit vector equilibrium problems. Math. Comput. Model. 43, 1267–1274 (2006)
Huang N.J., Li J., Yao J.C.: Gap functions and existence of solutions to a system of vector equilibrium problems. J. Optim. Theory Appl. 133, 201–212 (2007)
Khanh P.Q., Luu L.M.: Upper semicontinuity of the solution set to parametric vector quasivariational inequalities. J. Glob. Optim. 32, 569–580 (2005)
Kimura K., Yao J.C.: Sensitivity analysis of solution mappings of parametric vector quasiequilibrium problems. J. Glob. Optim. 41, 187–202 (2008)
Li S.J., Fang Z.M.: Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality. J. Optim. Theory Appl. 147, 507–515 (2010)
Li S.J., Liu H.M., Chen C.R.: Lower semicontinuity of parametric generalized weak vector equilibrium problems. Bull. Aust. Math. Soc 81, 85–95 (2010)
Li X.B., Li S.J.: Continuity of approximate solution mappings for parametric equilibrium problems. J. Glob. Optim. 51, 541–548 (2011)
Peng, Z.Y., Yang, X.M., Peng, J.W.: On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality. J. Optim. Theory Appl. 152, 256–264 (2011)
Xu S., Li S.J.: A new proof approach to lower semicontinuity for parametric vector equilibrium problems. Optim. Lett. 3, 459–543 (2009)
Zhong R.Y., Huang N.J.: Lower semicontinuity for parametric weak vector variational inequalities in reflexive Banach spaces. J. Optim. Theory Appl. 149, 564–579 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, B., Huang, Nj. Continuity of the solution mapping to parametric generalized vector equilibrium problems. J Glob Optim 56, 1515–1528 (2013). https://doi.org/10.1007/s10898-012-9904-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-9904-5