Abstract
A new method is described for computing nonlinear convex and concave relaxations of the solutions of parametric ordinary differential equations (ODEs). Such relaxations enable deterministic global optimization algorithms to be applied to problems with ODEs embedded, which arise in a wide variety of engineering applications. The proposed method computes relaxations as the solutions of an auxiliary system of ODEs, and a method for automatically constructing and numerically solving appropriate auxiliary ODEs is presented. This approach is similar to two existing methods, which are analyzed and shown to have undesirable properties that are avoided by the new method. Two numerical examples demonstrate that these improvements lead to significantly tighter relaxations than previous methods.
Similar content being viewed by others
References
Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)
Aubin J.P.: Viability Theory. Birkhauser, Boston (1991)
Banga J., Seider W.: Global optimization of chemical processes using stochastic algorithms. In: Floudas, C., Pardalos, P. (eds.) State of the Art in Global Optimization: Computational Methods and Applications, Kluwer, Dordrecht (1996)
Bompadre A., Mitsos A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52(1), 1–28 (2012)
Carrasco E., Banga J.: Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind. Eng. Chem. Res. 36(6), 2252–2261 (1997)
Castiglione F., Piccoli B.: Cancer immunotherapy, mathematical modeling and optimal control. J. Theor. Biol. 247, 723–732 (2007)
Cizniar M., Podmajersky M., Hirmajer T., Fikar M., Latifi A.M.: Global optimization for parameter estimation of differential-algebraic systems. Chem. Pap. 63(3), 274–283 (2009)
Cohen S.D., Hindmarsh A.C.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2), 138–143 (1996)
Esposito W.R., Floudas C.A.: Global optimization for the parameter estimation of differential-algabraic systems. Ind. Eng. Chem. Res. 39, 1291–1310 (2000)
Filippov A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)
Harrison, G.W.: Dynamic models with uncertain parameters. In: Avula, X. (eds.) Proceedings of the 1st International Conference on Mathematical Modeling, vol. 1, pp. 295–304 (1977)
Huang H., Adjiman C.S., Shah N.: Quantitative framework for reliable safety analysis. AIChE J. 48(1), 78–96 (2002)
Khalil K.H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)
Lin Y., Stadtherr M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45, 8438–8448 (2006)
Lin Y., Stadtherr M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53(4), 866–875 (2007)
Luus R., Dittrich J., Keil F.: Multiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor. Can. J. Chem. Eng. 70, 780–785 (1992)
Martin R.: Optimal control drug scheduling of cancer chemotherapy. Automatica 28(6), 1113–1123 (1992)
McCormick G.P.: Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)
Mitsos A., Chachuat B., Barton P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)
Moore R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Neher M., Jackson K.R., Nedialkov N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)
Papamichail I., Adjiman C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24(1), 1–33 (2002)
Papamichail I., Adjiman C.S.: Global optimization of dynamic systems. Comput. Chem. Eng. 28, 408–415 (2004)
Park T., Barton P.: State event location in differential-algebraic models. ACM Trans. Model. Comput. Simul. 6(2), 137–165 (1996)
Sahlodin A.M., Chachuat B.: Convex/concave relaxations of parametric ODEs using Taylor models. Comp. Chem. Eng. 35, 844–857 (2011)
Sahlodin A.M., Chachuat B.: Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric ODEs. Appl. Numer. Math. 61, 803–820 (2011)
Scott J.K., Barton P.I.: Tight, efficient bounds on the solutions of chemical kinetics models. Comput. Chem. Eng. 34, 717–731 (2010)
Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems (2011, submitted)
Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Optim. Control Appl. Methods (2012, in press). doi:10.1002/oca.2014
Scott J.K., Stuber M.D., Barton P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51, 569–606 (2011). doi:10.1007/s10898-011-9664-7
Singer A.B., Barton P.I.: Global solution of optimization problems with parameter-embedded linear dynamic systems. J. Optim. Theory Appl. 121, 613–646 (2004)
Singer A.B., Barton P.I.: Bounding the solutions of parameter dependent nonlinear ordinary differential equations. SIAM J. Sci. Comput. 27, 2167–2182 (2006)
Singer A.B., Barton P.I.: Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. A 110(3), 971–976 (2006)
Singer A.B., Barton P.I.: Global optimization with nonlinear ordinary differential equations. J. Glob. Optim. 34, 159–190 (2006)
Srinivasan B., Palanki S., Bonvin D.: Dynamic optimization of batch processes—I. characterization of the nominal solution. Comp. Chem. Eng. 27(1), 1–26 (2003)
Szarski J.: Differential Inequalities. Polish Scientific Publishers, Warszawa (1965)
Taylor J.W., Ehlker G., Carstensen H.H., Ruslen L., Field R.W., Green W.H.: Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents. J. Phys. Chem. A 108, 7193–7203 (2004)
Walter W.: Differential and Integral Inequalities. Springer, New York (1970)
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is based on work funded by the National Science Foundation under grant CBET-0933095.
Rights and permissions
About this article
Cite this article
Scott, J.K., Barton, P.I. Improved relaxations for the parametric solutions of ODEs using differential inequalities. J Glob Optim 57, 143–176 (2013). https://doi.org/10.1007/s10898-012-9909-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-9909-0