Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Stackelberg equilibria via variational inequalities and projections

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Existence and location of Stackelberg equilibria is studied for two players by using appropriate variational inequalities and fixed point arguments. Both compact and non-compact strategy sets are considered in Euclidean spaces; in the non-compact case, we apply arguments from the theory of (discrete and continuous) projective dynamical systems. Some examples are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir R., Grilo I.: Stackelberg versus cournot equilibrium. Games Econ. Behav. 26, 1–21 (1999)

    Article  Google Scholar 

  2. Cavazzuti E., Pappalardo M., Passacantando M.: Nash equilibria, variational inequalities, and dynamical systems. J. Optim. Theory Appl. 114(3), 491–506 (2002)

    Article  Google Scholar 

  3. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria, Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)

    Google Scholar 

  4. Giannessi, F., Maugeri, A., Pardalos, P.M. (eds.): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Methods, Nonconvex Optimization and its Applications, vol. 58. Kluwer, Dordrecht (2001)

    Google Scholar 

  5. Kristály A.: Location of nash equilibria: a riemannian geometrical approach. Proc. Am. Math. Soc. 138, 1803–1810 (2010)

    Article  Google Scholar 

  6. Kristály, A., Rădulescu, V., Varga, Cs.: Variational principles in mathematical physics, geometry, and economics. Cambridge University Press, Encyclopedia of Mathematics and its Applications, No. 136, 2010

  7. Moskovitz D., Dines L.L.: Convexity in a linear space with an inner product. Duke Math. J. 5, 520–534 (1939)

    Article  Google Scholar 

  8. Migdalas, A., Pardalos, P.M., Värbrand, P. (eds.): Multilevel Optimization: Algorithms and Applications, Nonconvex Optimization and its Applications, vol. 20. Kluwer, Dordrecht (1998)

    Google Scholar 

  9. Novak A.J., Feichtinger G., Leitmann G.: A differential game related to terrorism: nash and stackelberg strategies. J. Optim. Theory Appl. 144(3), 533–555 (2010)

    Article  Google Scholar 

  10. Pang J.-S., Fukushima M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. CMS 2, 21–56 (2005). doi:10.1007/s10287-004-0010-0

    Article  Google Scholar 

  11. Stanford W.: Pure strategy nash equilibria and the probabilistic prospects of stackelberg players. Oper. Res. Lett. 38(2), 94–96 (2010)

    Article  Google Scholar 

  12. Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(2), 77–109 (1986)

    Google Scholar 

  13. Xia Y.S., Wang J.: On the stability of globally projected dynamical systems. J. Optim. Theory Appl. 106(1), 129–150 (2000)

    Article  Google Scholar 

  14. Zhang J., Qu B., Xiu N.: Some projection-like methods for the generalized nash equilibria. Comput. Optim. Appl. 45, 89–109 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilárd Nagy.

Additional information

This work was supported by the grant PCCE-55/2008 “Sisteme diferentiale in analiza neliniara si aplicatii”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, S. Stackelberg equilibria via variational inequalities and projections. J Glob Optim 57, 821–828 (2013). https://doi.org/10.1007/s10898-012-9971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9971-7

Keywords