Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A new deterministic algorithm for solving convex mixed-integer nonlinear programming (MINLP) problems is presented in this paper: The extended supporting hyperplane (ESH) algorithm uses supporting hyperplanes to generate a tight overestimated polyhedral set of the feasible set defined by linear and nonlinear constraints. A sequence of linear or quadratic integer-relaxed subproblems are first solved to rapidly generate a tight linear relaxation of the original MINLP problem. After an initial overestimated set has been obtained the algorithm solves a sequence of mixed-integer linear programming or mixed-integer quadratic programming subproblems and refines the overestimated set by generating more supporting hyperplanes in each iteration. Compared to the extended cutting plane algorithm ESH generates a tighter overestimated set and unlike outer approximation the generation point for the supporting hyperplanes is found by a simple line search procedure. In this paper it is proven that the ESH algorithm converges to a global optimum for convex MINLP problems. The ESH algorithm is implemented as the supporting hyperplane optimization toolkit (SHOT) solver, and an extensive numerical comparison of its performance against other state-of-the-art MINLP solvers is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alefeld, G.E., Potra, F.A., Shi, Y.: Algorithm 748: enclosing zeros of continuous functions. ACM Trans. Math. Softw. 21(3), 327–344 (1995)

    Article  MATH  Google Scholar 

  2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, New York (2014)

    Book  MATH  Google Scholar 

  3. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 1–39. Springer, New York (2012)

    Chapter  Google Scholar 

  5. Bussieck, M., Dirkse, S., Vigerske, S.: PAVER 2.0: an open source environment for automated performance analysis of benchmarking data. J. Glob. Optim. 59(2–3), 259–275 (2014)

    Article  MATH  Google Scholar 

  6. Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of Operations Research and Management Science (2010)

  7. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eronen, V.P., Mäkelä, M.M., Westerlund, T.: On the generalization of ECP and OA methods to nonsmooth convex MINLP problems. Optimization 63(7), 1057–1073 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fourer, R., Ma, J., Martin, K.: OSiL: an instance language for optimization. Comput. Optim. Appl. 45(1), 181–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gassmann, H., Ma, J., Martin, K., Sheng, W.: Optimization services 2.9 users manual (2015). https://projects.coin-or.org/OS

  13. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeroslow, R.: There cannot be any algorithm for integer programming with quadratic constraints. Oper. Res. 21(1), 221–224 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kocis, G.R., Grossmann, I.E.: Computational experience with DICOPT solving MINLP problems in process systems engineering. Comput. Chem. Eng. 13(3), 307–315 (1989)

    Article  Google Scholar 

  16. Lastusilta, T., Bussieck, M.R., Westerlund, T.: An experimental study of the GAMS/AlphaECP MINLP solver. Ind. Eng. Chem. Res. 48(15), 7337–7345 (2009)

    Article  Google Scholar 

  17. Leyffer, S.: Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput. Optim. Appl. 18(3), 295–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lundell, A., Skjäl, A., Westerlund, T.: A reformulation framework for global optimization. J. Glob. Optim. 57(1), 115–141 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. 43(2), 391–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial programming problems. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 349–369. Springer, New York (2012)

    Chapter  Google Scholar 

  21. Mäkelä, M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17(1), 1–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. MINLP Library 2 (2014). http://www.gamsworld.org/minlp/minlplib2/html/

  23. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  25. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2), 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veinott Jr, A.F.: The supporting hyperplane method for unimodal programming. Oper. Res. 15(1), 147–152 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Westerlund, T., Petterson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)

    Article  Google Scholar 

  29. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3(3), 253–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Financial support from the Foundation of Åbo Akademi University and the Center of Excellence in Optimization and Systems Engineering, is gratefully acknowledged, as is the support from GAMS Development Corporation. JK is grateful for the financial support from the Finnish Graduate School in Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kronqvist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronqvist, J., Lundell, A. & Westerlund, T. The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J Glob Optim 64, 249–272 (2016). https://doi.org/10.1007/s10898-015-0322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0322-3

Keywords