Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lower bound sets for biobjective shortest path problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This article considers the problem of calculating the set of all Pareto-optimal solutions in one-to-one biobjective shortest path problems with positive cost vectors. The efficiency of multiobjective best-first search algorithms can be improved with the use of consistent informed lower bounds. More precisely, the use of the ideal point as a lower bound has recently been shown to effectively increase search performance. In theory, the use of lower bounds that better approximate the Pareto frontier using sets of vectors (bound sets), could further improve performance. This article describes a lower bound set calculation method for biobjective shortest path problems. Improvements in search efficiency with lower bound sets of increasing precision are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. These are available at: http://www.dis.uniroma1.it/challenge9/download.shtml and http://alef.iaia.lcc.uma.es/projects/alef-public/wiki/Benchmarks.

References

  1. Andreas, A.K., Smith, J.C.: Exact algorithms for robust k-path routing problems. In: International Workshop on Global, pp. 17–22 Optimization (2005)

  2. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balachandran, M., Gero, J.S.: A comparison of three methods for generating the pareto optimal set. Eng. Optim. 7(4), 319–336 (1984)

    Article  Google Scholar 

  4. Burdakov, O., Doherty, P., Holmberg, K., Olsson, P.: Optimal placement of UV-based communications relay nodes. J. Glob. Optim. 48(4), 511–531 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caramia, M., Giordani, S., Iovanella, A.: On the selection of k routes in multiobjective hazmat route planning. IMA J. Manag. Math. 21, 239–251 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dasgupta, P., Chakrabarti, P.P., DeSarkar, S.C.: Utility of pathmax in partial order heuristic search. Inf. Process. Lett. 55, 317–322 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. J. ACM 32(3), 505–536 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Delort, C., Spanjaard, O.: Using bound sets in multiobjective optimization: application to the biobjective binary knapsack problem. In: Experimental Algorithms, pp. 253–265. Springer, Berlin (2010)

  9. Demeyer, S., Goedgebeur, J., Audenaert, P., Pickavet, M., Demeester, P.: Speeding up martins algorithm for multiple objective shortest path problem. 4OR 11, 323–348 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674–2694 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Felner, A., Zahavi, U., Holte, R., Schaeffer, J., Sturtevant, N.R., Zhang, Z.: Inconsistent heuristics in theory and practice. Artifi. Intell. 175(9–10), 1570–1603 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hansen, P.: Bicriterion path problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin (1979)

  14. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  15. Iori, M., Martello, S., Pretolani, D.: An aggregate label setting policy for the multi-objective shortest path problem. Eur. J. Oper. Res. 207(3), 1489–1496 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Machuca, E., Mandow, L.: Multiobjective heuristic search in road maps. Expert Syst. Appl. 39, 6435–6445 (2012)

    Article  Google Scholar 

  17. Machuca, E., Mandow, L., Pérez de la Cruz, J.L.: An evaluation of heuristic functions for bicriterion shortest path problems. In: Proceedings of EPIA’09, pp. 205–216 (2009)

  18. Machuca, E., Mandow, L., Pérez de la Cruz, J.L., Ruiz-Sepulveda, A.: A comparison of heuristic best-first algorithms for bicriterion shortest path problems. Eur. J. Oper. Res. 217(1), 44–53 (2012)

    Article  MATH  Google Scholar 

  19. Machuca, E., Mandow, L.: Multiobjective route planning with precalculated heuristics. In: 15th Portuguese Conference on AI, EPIA 2011, pp. 98–107 (2011)

  20. Machuca, E.: An analysis of some algorithms and heuristics for multiobjective graph search. Ph.D. thesis, University of Malaga (2012)

  21. Mandow, L., Pérez de la Cruz, J.L.: A memory-efficient search strategy for multiobjective shortest path problems. In: 32nd Annual German Conference on AI, KI’2009, volume 5803 of Lecture Notes in Computer Science, pp. 25–32. Springer, Berlin (2009)

  22. Mandow, L., Pérez de la Cruz, J.L.: Multiobjective A* search with consistent heuristics. J. ACM 57(5), 1–25 (2010)

  23. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16, 236–245 (1984)

    Article  MATH  Google Scholar 

  24. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria shortest path problems. Ann. Oper. Res. 147(1), 269–286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pearl, J.: Heuristics. Addison-Wesley, Reading (1984)

    Google Scholar 

  26. Pérez de la Cruz, J.L., Mandow, L., Machuca, E.: A case of pathology in multiobjective heuristic search. J. Artif. Intell. Res. 48, 717–732 (2013)

    MATH  Google Scholar 

  27. Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stewart, B.S., White, C.C.: Multiobjective A*. J. ACM 38(4), 775–814 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tung, C.T., Chew, K.L.: A multicriteria Pareto-optimal path algorithm. Eur. J. Oper. Res. 62, 203–209 (1992)

    Article  MATH  Google Scholar 

  31. Zhang, J., Lin, Y.: Computation of the reverse shortest-path problem. J. Global Optim. 25(3), 243–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Funded by Plan Propio de Investigación, Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech Programa de Fortalecimiento de Capacidades I+D+i en universidades 2014–2015, Fondos FEDER. We would like to thank the anonymous reviewer for the very useful comments and suggestions which help us improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Machuca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machuca, E., Mandow, L. Lower bound sets for biobjective shortest path problems. J Glob Optim 64, 63–77 (2016). https://doi.org/10.1007/s10898-015-0324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0324-1

Keywords