Abstract
This article considers the problem of calculating the set of all Pareto-optimal solutions in one-to-one biobjective shortest path problems with positive cost vectors. The efficiency of multiobjective best-first search algorithms can be improved with the use of consistent informed lower bounds. More precisely, the use of the ideal point as a lower bound has recently been shown to effectively increase search performance. In theory, the use of lower bounds that better approximate the Pareto frontier using sets of vectors (bound sets), could further improve performance. This article describes a lower bound set calculation method for biobjective shortest path problems. Improvements in search efficiency with lower bound sets of increasing precision are analyzed and discussed.
Similar content being viewed by others
Notes
These are available at: http://www.dis.uniroma1.it/challenge9/download.shtml and http://alef.iaia.lcc.uma.es/projects/alef-public/wiki/Benchmarks.
References
Andreas, A.K., Smith, J.C.: Exact algorithms for robust k-path routing problems. In: International Workshop on Global, pp. 17–22 Optimization (2005)
Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)
Balachandran, M., Gero, J.S.: A comparison of three methods for generating the pareto optimal set. Eng. Optim. 7(4), 319–336 (1984)
Burdakov, O., Doherty, P., Holmberg, K., Olsson, P.: Optimal placement of UV-based communications relay nodes. J. Glob. Optim. 48(4), 511–531 (2010)
Caramia, M., Giordani, S., Iovanella, A.: On the selection of k routes in multiobjective hazmat route planning. IMA J. Manag. Math. 21, 239–251 (2010)
Dasgupta, P., Chakrabarti, P.P., DeSarkar, S.C.: Utility of pathmax in partial order heuristic search. Inf. Process. Lett. 55, 317–322 (1995)
Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. J. ACM 32(3), 505–536 (1985)
Delort, C., Spanjaard, O.: Using bound sets in multiobjective optimization: application to the biobjective binary knapsack problem. In: Experimental Algorithms, pp. 253–265. Springer, Berlin (2010)
Demeyer, S., Goedgebeur, J., Audenaert, P., Pickavet, M., Demeester, P.: Speeding up martins algorithm for multiple objective shortest path problem. 4OR 11, 323–348 (2013)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)
Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674–2694 (2007)
Felner, A., Zahavi, U., Holte, R., Schaeffer, J., Sturtevant, N.R., Zhang, Z.: Inconsistent heuristics in theory and practice. Artifi. Intell. 175(9–10), 1570–1603 (2011)
Hansen, P.: Bicriterion path problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin (1979)
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)
Iori, M., Martello, S., Pretolani, D.: An aggregate label setting policy for the multi-objective shortest path problem. Eur. J. Oper. Res. 207(3), 1489–1496 (2010)
Machuca, E., Mandow, L.: Multiobjective heuristic search in road maps. Expert Syst. Appl. 39, 6435–6445 (2012)
Machuca, E., Mandow, L., Pérez de la Cruz, J.L.: An evaluation of heuristic functions for bicriterion shortest path problems. In: Proceedings of EPIA’09, pp. 205–216 (2009)
Machuca, E., Mandow, L., Pérez de la Cruz, J.L., Ruiz-Sepulveda, A.: A comparison of heuristic best-first algorithms for bicriterion shortest path problems. Eur. J. Oper. Res. 217(1), 44–53 (2012)
Machuca, E., Mandow, L.: Multiobjective route planning with precalculated heuristics. In: 15th Portuguese Conference on AI, EPIA 2011, pp. 98–107 (2011)
Machuca, E.: An analysis of some algorithms and heuristics for multiobjective graph search. Ph.D. thesis, University of Malaga (2012)
Mandow, L., Pérez de la Cruz, J.L.: A memory-efficient search strategy for multiobjective shortest path problems. In: 32nd Annual German Conference on AI, KI’2009, volume 5803 of Lecture Notes in Computer Science, pp. 25–32. Springer, Berlin (2009)
Mandow, L., Pérez de la Cruz, J.L.: Multiobjective A* search with consistent heuristics. J. ACM 57(5), 1–25 (2010)
Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16, 236–245 (1984)
Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria shortest path problems. Ann. Oper. Res. 147(1), 269–286 (2006)
Pearl, J.: Heuristics. Addison-Wesley, Reading (1984)
Pérez de la Cruz, J.L., Mandow, L., Machuca, E.: A case of pathology in multiobjective heuristic search. J. Artif. Intell. Res. 48, 717–732 (2013)
Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)
Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)
Stewart, B.S., White, C.C.: Multiobjective A*. J. ACM 38(4), 775–814 (1991)
Tung, C.T., Chew, K.L.: A multicriteria Pareto-optimal path algorithm. Eur. J. Oper. Res. 62, 203–209 (1992)
Zhang, J., Lin, Y.: Computation of the reverse shortest-path problem. J. Global Optim. 25(3), 243–261 (2003)
Acknowledgments
Funded by Plan Propio de Investigación, Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech Programa de Fortalecimiento de Capacidades I+D+i en universidades 2014–2015, Fondos FEDER. We would like to thank the anonymous reviewer for the very useful comments and suggestions which help us improve the quality of our paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Machuca, E., Mandow, L. Lower bound sets for biobjective shortest path problems. J Glob Optim 64, 63–77 (2016). https://doi.org/10.1007/s10898-015-0324-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-015-0324-1