Abstract
We discuss a branch and bound algorithm for global optimization of NP-hard problems related to robust stability. This includes computing the distance to instability of a system with uncertain parameters, computing the minimum stability degree of a system over a given set of uncertain parameters, and computing the worst case \(H_\infty \) norm over a given parameter range. The success of our method hinges (1) on the use of an efficient local optimization technique to compute lower bounds fast and reliably, (2) a method with reduced conservatism to compute upper bounds, and (3) the way these elements are favorably combined in the algorithm.
Similar content being viewed by others
References
Apkarian, P., Noll, D., Ravanbod. L.: Computing the structured distance to instability. In: Proceedings of the SIAM Conference on Control Applications, Paris, pp. 423–430 (2015). doi:10.1137/1.9781611974072.58
Apkarian, P., Noll, D., Ravanbod, L.: Nonsmooth bundle trust-region algorithm with applications to robust stability. Set-Valued Var. Anal. 24(1), 115–148 (2016)
Apkarian, P., Noll, D.: Nonsmooth \(H_\infty \) synthesis. IEEE Trans. Autom. Control 51(1), 71–86 (2006)
Balakrishnan, V., Boyd, S., Balemi, S.: Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems. Int. J. Robust Nonlinear Control 1(4), 295–317 (1991)
Balakrishnan, V., Boyd, S.: Global optimization in control system analysis and design. In: Leonides, C.T. (ed.) Control and Dynamic Systems: Advances in Theory and Applications, vol. 53. Academic Press, New York (1992)
Balas, G.J., Doyle, J.C., Glover, K., Packard, A., Smith, R.: \(\mu \)-Analysis and synthesis toolbox: user’s guide. The MathWorks Inc, Natick (1991)
Bemporad, A., Mignone, D., Morari, M.: An efficient branch and bound algorithm for state estimation and control of hybrid systems. In: Proceedings of the European Control Conference, pp. 557–562 (1999)
Blondel, V., Abdallah, C.T., Heileman, G.L.: Complexity issues and decision methods in control systems. J. Symb. Comp. 11, 1–12 (1995)
Blondel, V., Tsitsiklis, J.N.: NP-hardness of some linear control design problems. SIAM J. Control Optim. 35(6), 2118–2127 (1997)
Braatz, R.D., Young, P.M., Doyle, J.C., Morari, M.: Computational complexity of \(\mu \) calculation. IEEE Trans. Autom. Control 39(5), 1000–1002 (1994)
De Gaston, R.R.E., Safonov, M.G.: Exact calculation of there multiloop stability margin. IEEE Trans. Autom. Control 33(2), 156–171 (1988)
Doyle, J.: Analysis of feedback systems with structured uncertainties. IEE Proc. D (Control Theory Appl.) 129(6), 242–250 (1982)
Fabrizi, A., Roos, C., Biannic, J.M.: A detailed comparative analysis of lower bound algorithms. In: Proceedings of the European Control Conference, Strasbourg, France (2014)
Fan, M.K.H.: User’s guide to MUSOL2: a package for computing the structured singular value or its upper bound (1988)
Fan, M.K.H., Tits, A.L., Doyle, J.C.: Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Autom. Control 36(3), 25–38 (1991)
Graham, M.R., de Oliveira, M.C., de Callafon, R.A.: A linear matrix inequality for robust stability analysis with frequency dependent multipliers. In: Proceedings of the 45th IEEE CDC, San Diego (2006)
Henrion, D., Arzelier, D., Peaucelle, D., Lasserre, J.-B.: On parameter-dependent Lyapunov functions for for robust stability of linear systems. In: 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, Atlantis, 14–17 Dec (2004)
Lasserre, J.-B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)
Noll, D., Prot, O., Rondepierre, A.: A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pac. J. Optim. 4(3), 571–604 (2008)
Noll, D.: Convergence of non-smooth descent methods using the Kurdyka–Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)
Poljak, S., Rohn, J.: Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6, 1–9 (1993)
Ravanbod, L., Noll, D., Apkarian, P., Branch and bound algorithm for the robustness analysis of uncertain systems. In: Proceedings of the 16th IFAC Workshop on Control Applications of Optimization (CAO 2015): Oct. 6–9, Garmisch-Partenkirchen 2015, pp. 85–90 (2015)
Robust Control Toolbox 5.0. MathWorks, Natick, MA, Sept. 2013
Romero-Monsivais, H., Rodriguez-Tello, E., Ramirez, G.: A new branch and bound algorithm for the cyclic bandwidth problem. Lect. Notes Artif. Intell. 7630, 139–150 (2012)
Safonov, M.G.: Stability and Robustness of Multivariable Feedback Systems. MIT Press, Cambridge (1980)
Sakizlis, V., Kakalis, M.P., Dua, V., Perkins, D., Pistikopoulos, E.N.: Design of robust model-based controllers via parametric programming. Automatica 40(2), 189–201 (2004)
Sideris, A., Peña, R.S.S.: Fast computation of the multivariable stability margin for real inter- related uncertain parameters. IEEE Trans. Autom. Control 34(12), 1272–1276 (1989)
SMAC Toolbox, ONERA 2012–15, http://w3.onera.fr/smac
Toker, O., Özbay, H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proceedings of the ACC. Seattle, pp. 2525–2526 (1995)
Zheng, Q., Zhuang, D.: Integral global minimization: algorithms, implementations, and numerical tests. J. Glob. Optim. 7, 421–454 (1995)
Zhou, K., Glover, K., Doyle, J.C.: Robust and Optimal Control. Prentice Hall, Englewood Cliffs (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ravanbod, L., Noll, D. & Apkarian, P. Branch and bound algorithm with applications to robust stability. J Glob Optim 67, 553–579 (2017). https://doi.org/10.1007/s10898-016-0424-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-016-0424-6