Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Branch and bound algorithm with applications to robust stability

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We discuss a branch and bound algorithm for global optimization of NP-hard problems related to robust stability. This includes computing the distance to instability of a system with uncertain parameters, computing the minimum stability degree of a system over a given set of uncertain parameters, and computing the worst case \(H_\infty \) norm over a given parameter range. The success of our method hinges (1) on the use of an efficient local optimization technique to compute lower bounds fast and reliably, (2) a method with reduced conservatism to compute upper bounds, and (3) the way these elements are favorably combined in the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Apkarian, P., Noll, D., Ravanbod. L.: Computing the structured distance to instability. In: Proceedings of the SIAM Conference on Control Applications, Paris, pp. 423–430 (2015). doi:10.1137/1.9781611974072.58

  2. Apkarian, P., Noll, D., Ravanbod, L.: Nonsmooth bundle trust-region algorithm with applications to robust stability. Set-Valued Var. Anal. 24(1), 115–148 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apkarian, P., Noll, D.: Nonsmooth \(H_\infty \) synthesis. IEEE Trans. Autom. Control 51(1), 71–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balakrishnan, V., Boyd, S., Balemi, S.: Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems. Int. J. Robust Nonlinear Control 1(4), 295–317 (1991)

    Article  MATH  Google Scholar 

  5. Balakrishnan, V., Boyd, S.: Global optimization in control system analysis and design. In: Leonides, C.T. (ed.) Control and Dynamic Systems: Advances in Theory and Applications, vol. 53. Academic Press, New York (1992)

    Google Scholar 

  6. Balas, G.J., Doyle, J.C., Glover, K., Packard, A., Smith, R.: \(\mu \)-Analysis and synthesis toolbox: user’s guide. The MathWorks Inc, Natick (1991)

    Google Scholar 

  7. Bemporad, A., Mignone, D., Morari, M.: An efficient branch and bound algorithm for state estimation and control of hybrid systems. In: Proceedings of the European Control Conference, pp. 557–562 (1999)

  8. Blondel, V., Abdallah, C.T., Heileman, G.L.: Complexity issues and decision methods in control systems. J. Symb. Comp. 11, 1–12 (1995)

    Google Scholar 

  9. Blondel, V., Tsitsiklis, J.N.: NP-hardness of some linear control design problems. SIAM J. Control Optim. 35(6), 2118–2127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braatz, R.D., Young, P.M., Doyle, J.C., Morari, M.: Computational complexity of \(\mu \) calculation. IEEE Trans. Autom. Control 39(5), 1000–1002 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Gaston, R.R.E., Safonov, M.G.: Exact calculation of there multiloop stability margin. IEEE Trans. Autom. Control 33(2), 156–171 (1988)

    Article  MATH  Google Scholar 

  12. Doyle, J.: Analysis of feedback systems with structured uncertainties. IEE Proc. D (Control Theory Appl.) 129(6), 242–250 (1982)

    Article  MathSciNet  Google Scholar 

  13. Fabrizi, A., Roos, C., Biannic, J.M.: A detailed comparative analysis of lower bound algorithms. In: Proceedings of the European Control Conference, Strasbourg, France (2014)

  14. Fan, M.K.H.: User’s guide to MUSOL2: a package for computing the structured singular value or its upper bound (1988)

  15. Fan, M.K.H., Tits, A.L., Doyle, J.C.: Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Autom. Control 36(3), 25–38 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, M.R., de Oliveira, M.C., de Callafon, R.A.: A linear matrix inequality for robust stability analysis with frequency dependent multipliers. In: Proceedings of the 45th IEEE CDC, San Diego (2006)

  17. Henrion, D., Arzelier, D., Peaucelle, D., Lasserre, J.-B.: On parameter-dependent Lyapunov functions for for robust stability of linear systems. In: 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, Atlantis, 14–17 Dec (2004)

  18. Lasserre, J.-B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Noll, D., Prot, O., Rondepierre, A.: A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pac. J. Optim. 4(3), 571–604 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Noll, D.: Convergence of non-smooth descent methods using the Kurdyka–Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Poljak, S., Rohn, J.: Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6, 1–9 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ravanbod, L., Noll, D., Apkarian, P., Branch and bound algorithm for the robustness analysis of uncertain systems. In: Proceedings of the 16th IFAC Workshop on Control Applications of Optimization (CAO 2015): Oct. 6–9, Garmisch-Partenkirchen 2015, pp. 85–90 (2015)

  23. Robust Control Toolbox 5.0. MathWorks, Natick, MA, Sept. 2013

  24. Romero-Monsivais, H., Rodriguez-Tello, E., Ramirez, G.: A new branch and bound algorithm for the cyclic bandwidth problem. Lect. Notes Artif. Intell. 7630, 139–150 (2012)

    Google Scholar 

  25. Safonov, M.G.: Stability and Robustness of Multivariable Feedback Systems. MIT Press, Cambridge (1980)

    MATH  Google Scholar 

  26. Sakizlis, V., Kakalis, M.P., Dua, V., Perkins, D., Pistikopoulos, E.N.: Design of robust model-based controllers via parametric programming. Automatica 40(2), 189–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sideris, A., Peña, R.S.S.: Fast computation of the multivariable stability margin for real inter- related uncertain parameters. IEEE Trans. Autom. Control 34(12), 1272–1276 (1989)

    Article  MATH  Google Scholar 

  28. SMAC Toolbox, ONERA 2012–15, http://w3.onera.fr/smac

  29. Toker, O., Özbay, H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proceedings of the ACC. Seattle, pp. 2525–2526 (1995)

  30. Zheng, Q., Zhuang, D.: Integral global minimization: algorithms, implementations, and numerical tests. J. Glob. Optim. 7, 421–454 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, K., Glover, K., Doyle, J.C.: Robust and Optimal Control. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominikus Noll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravanbod, L., Noll, D. & Apkarian, P. Branch and bound algorithm with applications to robust stability. J Glob Optim 67, 553–579 (2017). https://doi.org/10.1007/s10898-016-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0424-6

Keywords