Abstract
Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage.













Similar content being viewed by others
Change history
09 March 2018
This note lists changes to the article by Bradford et al.. A number of figures have moved to the wrong positions, while the references in the text still refer to the correct figure, i.e. a number of figures are now in the wrong section, have the wrong position and have the wrong caption.
References
Farmani, R., Savic, D., Walters, G.: Evolutionary multi-objective optimization in water distribution network design. Eng. Optim. 37(2), 167–183 (2005)
Censor, Y.: Pareto optimality in multiobjective problems. Appl. Math. Optim. 4(1), 41–59 (1977)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Ehrgott, M.: Multiobjective optimization. AI Mag. 29(4), 47 (2009)
Hwang, C.-R.: Simulated annealing: theory and applications. Acta Appl. Math. 12(1), 108–111 (1988)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)
Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.-J.: Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct. Multidiscipl. Optim. 27(5), 302–313 (2004)
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
Močkus, J.: On Bayesian methods for seeking the extremum. In: Optimization Techniques IFIP Technical Conference, pp. 400–404. Springer (1975)
Łaniewski-Wołłk, Ł.: Relative Expected Improvement in Kriging Based Optimization. arXiv preprint arXiv:0908.3321 (2009)
Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)
Forrester, A.I., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1), 50–79 (2009)
Voutchkov, I., Keane, A.: Multi-objective optimization using surrogates. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Optimization, pp. 155–175. Springer, Berlin (2010)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted\(\backslash \) mathcal S-Metric selection. In: International Conference on Parallel Problem Solving from Nature, pp. 784–794. Springer (2008)
Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)
Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)
Emmerich, M., Klinkenberg, J.-W.: The computation of the expected improvement in dominated hypervolume of Pareto front approximations. Rapport technique, Leiden University (2008)
Emmerich, M.: Single-and multi-objective evolutionary design optimization assisted by gaussian random field metamodels. Ph.D. thesis, University of Dortmund (2005)
Emmerich, M., Deutz, A., Klinkenberg, J.-W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation, pp. 2147–2154. IEEE (2011)
Hupkens, I., Emmerich, M., Deutz, A.: Faster Computation of Expected Hypervolume Improvement. arXiv preprint arXiv:1408.7114 (2014)
Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of bayesian global optimization. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization, pp. 229–242. Springer, Berlin (2016)
Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 685–700. Springer (2017)
Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)
Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer, Berlin (2007)
Žilinskas, A.: A statistical model-based algorithm for ‘black-box’multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–93 (2014)
Helmdach, D., Yaseneva, P., Heer, P.K., Schweidtmann, A.M., Lapkin, A.: A multi-objective optimisation including results of life cycle assessment in developing bio-renewables-based processes. ChemSusChem 10(18), 3632–3643 (2017)
Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., VonLuxburg, U., Ratsch, G. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 3176, pp. 63–71 (2004)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2005)
Ebden, M.: Gaussian processes: a quick introduction. arXiv preprint arXiv:1505.02965 (2015)
Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Yang, X., Maciejowski, J.M.: Fault tolerant control using Gaussian processes and model predictive control. Int. J. Appl. Math. Comput. Sci. 25(1), 133–148 (2015)
Matérn, B.: Spatial Variation, vol. 36. Springer, Berlin (2013)
Sundararajan, S., Keerthi, S.S.: Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Comput. 13(5), 1103–1118 (2001)
Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for efficient global optimization of black-box functions. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, vol. 1, pp. 918–926. MIT Press, Cambridge (2014)
Bochner, S.: Lectures on Fourier Integrals, vol. 42. Princeton University Press, Princeton (1959)
Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, pp. 1177–1184. MIT Press, Cambridge (2007)
Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C.E., Figueiras-Vidal, A.R.: Sparse spectrum Gaussian process regression. J. Mach. Learn. Res. 11(6), 1865–1881 (2010)
Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 2249–2257. MIT Press, Cambridge (2011)
Scott, S.L.: A modern Bayesian look at the multi-armed bandit. Appl. Stoch. Models Bus. Ind. 26(6), 639–658 (2010)
Shahriari, B., Wang, Z., Hoffman, M.W., Bouchard-Côté, A., de Freitas, N.: An entropy search portfolio for Bayesian optimization. arXiv preprint arXiv:1406.4625 (2014)
Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically optimal finite-time analysis. In: International Conference on Algorithmic Learning Theory, pp. 199–213. Springer (2012)
Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear payoffs. In: 30th International Conference on Machine Learning (ICML-13), pp. 127–135 (2013)
Yahyaa, S., Manderick, B.: Thompson sampling for multi-objective multi-armed bandits problem. In: 2015 European Symposium on Artificial Neural Networks, pp. 47–52. Presses universitaires de Louvain (2015)
Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)
Emmerich, M., Fonseca, C.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization, pp. 121–135. Springer, Berlin (2011)
Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems: Proceedings of the 19th International Conference on Multiple Criteria Decision Making. pp. 313–326. Springer, Berlin (2010)
Finkel, D.E.: DIRECT Optimization Algorithm User Guide. http://www4.ncsu.edu/~ctk/Finkel_Direct/DirectUserGuide_pdf.pdf. Accessed 26 Nov 2017 (2003)
Lin, S.: NGPM a NSGA-II Program in Matlab. Codelooker. http://www.codelooker.com/dfilec/6987NGPMv11.4/NGPMmanualv1.4.pdf. Accessed 26 Nov 2017 (2011)
Rasmussen, C.E., Nickisch, H.: The GPML Toolbox Version 3.5. http://mlg.eng.cam.ac.uk/carl/gpml/doc/manual.pdf. Accessed 26 Nov 2017 (2014)
Yi, C.: Pareto Set. Matlab File Exchange. https://se.mathworks.com/matlabcentral/fileexchange/15181-pareto-set. Accessed 26 Nov 2017 (2014)
Yi, C.: Hypervolume Indicator. Matlab File Exchange. https://se.mathworks.com/matlabcentral/fileexchange/19651-hypervolume-indicator. Accessed 26 Nov 2017 (2008)
Bradford, E., Schweidtmann, A.M.: TS-EMO. GitHub. https://github.com/Eric-Bradford/TS-EMO. Accessed 29 Nov 2017 (2017)
Schaffer, J.D.: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Vanderbilt University, Nashville (1985)
Cristescu, C.: ParEGO_Eigen. GitHub. https://github.com/CristinaCristescu/ParEGO_Eigen/graphs/contributors. Accessed 26 Nov 2017 (2015)
Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., Crombecq, K.: A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res 11(Jul), 2051–2055 (2010)
Cristescu, C., Knowles, J.: Surrogate-Based Multiobjective Optimization: ParEGO Update and Test
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Tik Rep. 214, 327–332 (2006)
Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), 2015 Latin American, pp. 1–11. IEEE (2015)
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified Distance Calculation in Generational Distance and Inverted Generational Distance. Springer, Cham (2015)
Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: IEEE Congress on Evolutionary Computation, 2006 (CEC 2006), pp. 892–899. IEEE
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. ETH Zurich, Zurich (1999)
Jiang, S., Ong, Y.-S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)
Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: International Conference on Parallel Problem Solving from Nature, pp. 584–593. Springer (1996)
Knowles, J.: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: 5th International Conference on Intelligent Systems Design and Applications, 2005, pp. 552–557. IEEE (2005)
Acknowledgements
The research leading to these results has received funding from the European Research Council under the European Union’s H2020 Programme Grant Agreement No. 636820. Artur M. Schweidtmann thanks the Ernest-Solvay-Foundation and the ERASMUS+ program for a scholarship for his exchange at the University of Cambridge.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bradford, E., Schweidtmann, A.M. & Lapkin, A. Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm. J Glob Optim 71, 407–438 (2018). https://doi.org/10.1007/s10898-018-0609-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-018-0609-2