Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Methods to compare expensive stochastic optimization algorithms with random restarts

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the challenge of numerically comparing optimization algorithms that employ random-restarts under the assumption that only limited test data is available. We develop a bootstrapping technique to estimate the incumbent solution of the optimization problem over time as a stochastic process. The asymptotic properties of the estimator are examined and the approach is validated by an out-of-sample test. Finally, three methods for comparing the performance of different algorithms based on the estimator are proposed and demonstrated with data from a real-world optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. It is worth remarking that the term initial condition (as apposed to starting point) is used to emphasize that the initial condition could control a starting point, or a selection of parameters, or even just the random seed employed by a stochastic optimization algorithm.

  2. Full results are available upon request.

  3. Problem and algorithm details are irrelevant to the results of this paper, so we omit them for space.

References

  1. Abramson, M.A., Audet, C., Couture, G., Dennis Jr., J.E., Le Digabel, S., Tribes, C.: The NOMAD project. Software available at https://www.gerad.ca/nomad/

  2. Audet, C., Dennis Jr., J.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MathSciNet  Google Scholar 

  3. Beiranvand, V., Hare, W., Lucet, Y.: Best practices for comparing optimization algorithms. Optim. Eng. 18(4), 815–848 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bickel, P.J., Freedman, D.A.: Some asymptotic theory for the bootstrap. Ann. Stat. 9(6), 1196–1217 (1981)

    Article  MathSciNet  Google Scholar 

  5. Butler, A., Haynes, R.D., Humphries, T.D., Ranjan, P.: Efficient optimization of the likelihood function in Gaussian process modelling. Comput. Stat. Data Anal. 73, 40–52 (2014)

    Article  MathSciNet  Google Scholar 

  6. Currie, J., Wilson, D.: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user. In: Sahinidis, N., Pinto, J. (eds.) Foundations of Computer-Aided Process Operations. Savannah, Georgia (2012)

    Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  8. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Number 57 in Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton (1993)

    Book  Google Scholar 

  9. Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

    Article  Google Scholar 

  10. Fowler, K.R., Reese, J.P., Kees, C.E., Dennis Jr., J.E., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31(5), 743–757 (2008)

    Article  Google Scholar 

  11. Glover, F.: A Template for Scatter Search and Path Relinking, pp. 1–51. Springer, Berlin (1998)

    Google Scholar 

  12. Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl. Stoch. Search 7, 198–206 (1978)

    MATH  Google Scholar 

  13. Hoos, H.H., Stützle, T.: Evaluating Las Vegas algorithms: pitfalls and remedies. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI’98, pp. 238–245, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc

  14. Houck, C.R., Joines, J.A., Kay, M.G.: Comparison of genetic algorithms, random restart and two-opt switching for solving large location–allocation problems. Comput. Oper. Res. 23(6), 587–596 (1996)

    Article  Google Scholar 

  15. Kocsis, L., György, A.: Efficient Multi-start Strategies for Local Search Algorithms, pp. 705–720. Springer, Berlin (2009)

    MATH  Google Scholar 

  16. Kuindersma, S.R., Grupen, R.A., Barto, A.G.: Variable risk control via stochastic optimization. Int. J. Robot. Res. 32(7), 806–825 (2013)

    Article  Google Scholar 

  17. Mondal, S., Lucet, Y., Hare, W.: Optimizing horizontal alignment of roads in a specified corridor. Comput. Oper. Res. 64, 130–138 (2015)

    Article  MathSciNet  Google Scholar 

  18. Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  MathSciNet  Google Scholar 

  19. G.A. Ortiz: Evolution strategies, May 2012. http://www.mathworks.com/matlabcentral/fileexchange/35801-evolution-strategies--es-

  20. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms. Math. Comput. Simul. 141, 96–109 (2016)

    Article  MathSciNet  Google Scholar 

  21. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. (2018). https://doi.org/10.1038/s41598-017-18940-4

    Article  Google Scholar 

  22. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley-Interscience, Hoboken (2003)

    Book  Google Scholar 

  23. Stich, S.U., Müller, C.L., Gärtner, B.: Optimization of convex functions with random pursuit. SIAM J. Optim. 23(2), 1284–1309 (2013)

    Article  MathSciNet  Google Scholar 

  24. Vasant, P., Weber, G., Dieu, V.: Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics. IGI Global, Hershey (2016)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) under Collaborative Research and Development (CRD) Grant #CRDPJ 411318-15. The Grant was sponsored by Softree Technical Systems Inc. This work was supported by Discovery Grants #355571-2013 (Hare) and #2015-03895 (Loeppky) from NSERC. Part of the research was performed in the Computer-Aided Convex Analysis (CA2) laboratory funded by a Leaders Opportunity Fund (LOF) from the Canada Foundation for Innovation (CFI) and by a British Columbia Knowledge Development Fund (BCKDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Hare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hare, W., Loeppky, J. & Xie, S. Methods to compare expensive stochastic optimization algorithms with random restarts. J Glob Optim 72, 781–801 (2018). https://doi.org/10.1007/s10898-018-0673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0673-7

Keywords