Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Second-order KKT optimality conditions for multiobjective discrete optimal control problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper deals with second-order necessary and sufficient optimality conditions of Karush–Kuhn–Tucker-type for local optimal solutions in the sense of Pareto to a class of multi-objective discrete optimal control problems with nonconvex cost functions and state-control constraints. By establishing an abstract result on second-order optimality conditions for a multi-objective mathematical programming problem, we derive second-order necessary and sufficient optimality conditions for a multi-objective discrete optimal control problem. Using a common critical cone for both the second-order necessary and sufficient optimality conditions, we obtain “no-gap” between second-order optimality conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellaassli, S., Jourani, A.: Necessary optimality conditions in dynamic optimization. SIAM J. Control Optim. 42, 2043–2061 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bemporad, A., Muñoz de la Peña, D.: Multiobjective model predictive control. Automatica 45, 2823–2830 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bhaskar, V., Gupta, S.K., Ray, A.K.: Multiobjective optimization of an industrial wiped film Pet reactor. Am. Inst. Chem. Eng. J. 46, 1046–1058 (2000)

    Article  Google Scholar 

  4. Bhaskar, V., Gupta, S.K., Ray, A.K.: Applications of multiobjective optimization in chemical engineering. Rev. Chem. Eng. 16, 1–54 (2000)

    Article  Google Scholar 

  5. Blot, J., Hayek, N.: Infinite-Horizon Optimal Control in the Discrete-Time Framework. Springer, New York (2014)

    Book  Google Scholar 

  6. Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002)

    Article  MathSciNet  Google Scholar 

  7. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)

    Article  MathSciNet  Google Scholar 

  8. Dockner, E., Long, N.V.: International pollution control: cooperative versus non-cooperative strategies. J. Environ. Econ. Manag. 25, 13–29 (1993)

    Article  Google Scholar 

  9. Dockner, E., Jorgensen, S., Long, N.V., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  10. Dockner, E.J., Nishimura, K.: Strategic growth. J. Differ. Equ. Appl. 10, 515–527 (2004)

    Article  MathSciNet  Google Scholar 

  11. Gfrerer, H.: Second-order optimality conditions for scalar and vector optimization problems in Banach spaces. SIAM J. Control Optim. 45, 972–997 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ginchev, I., Guerraggio, A., Rocca, M.: Second-order condition in \(C^{1,1}\) constrained vector optimization. Math. Progam. Ser. B. 104, 389–405 (2005)

    Article  Google Scholar 

  13. Hayek, N.: Infinite horizon multiobjective optimal control problems in the discrete time case. Optimization 60, 509–529 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hayek, N.: A generalization of mixed problems with an application to multiobjective optimal control. J. Optim. Theory Appl. 150, 498–515 (2011)

    Article  MathSciNet  Google Scholar 

  15. Henrion, R., Mordukhovich, B.S., Nam, N.M.: Second-order analysis of polyhedral systems in finite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim. 20, 2199–2227 (2010)

    Article  MathSciNet  Google Scholar 

  16. Huy, N.Q., Kim, D.S., Tuyen, N.V.: New second-order Karush-Kuhn-Tucker optimality conditions for vector optimization. Appl. Math. Optim. 79, 279–307 (2019)

    Article  MathSciNet  Google Scholar 

  17. Jiménez, B., Novo, V.: Second order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58, 299–317 (2003)

    Article  MathSciNet  Google Scholar 

  18. Jiménez, B., Novo, V.: Optimality conditions in differentiable vector optimization via second-order tangent sets. Appl. Math. Optim. 49, 123–144 (2004)

    Article  MathSciNet  Google Scholar 

  19. Kaya, C.Y., Maurer, H.: A numerical method for nonconvex multi-objective optimal control problems. Comput. Optim. Appl. 57, 685–702 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kien, B.T., Wong, N.-C., Yao, J.-C.: Necessary conditions for multi-objective optimal control problem with free end-time. SIAM J. Control Optim. 47, 2251–2274 (2010)

    Article  Google Scholar 

  21. Kien, B.T., Nhu, V.H.: Second-order necessary optimality conditions for a class of semilinear elliptic optimal control problems with mixed pointwise constraints. SIAM J. Control Optim. 52, 1166–1202 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kien, B.T., Yao, J.-C., Tuyen, N.V.: Second-order KKT optimality conditions for multi-objective optimal control problems. SIAM J. Control Optim. 56, 4069–4097 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, L.P.: Characterization of nondominated controls in terms of solutions of weighting problems. J. Optim. Theory Appl. 77, 545–561 (1993)

    Article  MathSciNet  Google Scholar 

  24. Mangasarian, O.L., Shiau, T.-H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)

    Article  MathSciNet  Google Scholar 

  25. Mordukhovich, B.S., Treiman, J.S., Zhu, Q.J.: An extended extremal principle with applications to multiobjective optimization. SIAM J. Optim. 14, 359–379 (2003)

    Article  MathSciNet  Google Scholar 

  26. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basis Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  27. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II. Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  28. Ngo, T.-N., Hayek, N.: Necessary conditions of Pareto optimality for multiobjective optimal control problems under constraints. Optimization 66, 149–177 (2017)

    Article  MathSciNet  Google Scholar 

  29. Ning, E., Song, W., Zhang, Y.: Second-order sufficient optimality conditions in vector optimization. J. Glob. Optim. 54, 537–549 (2012)

    Article  MathSciNet  Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  Google Scholar 

  31. Peitz, S., Dellnitz, M.: A survey of recent trends in multiobjective optimal control–surrogate models, feedback control and objective reduction. Math. Comput. Appl. 23, 1–33 (2018)

  32. Reddy, P.V., Engwerda, J.C.: Necessary and sufficient conditions for Pareto optimality in infinite horizon cooperative differential games. IEEE Trans. Autom. Control 59, 2536–2542 (2014)

    Article  MathSciNet  Google Scholar 

  33. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  34. Son, N.H., Kien, B.T., Rösch, A.: Second-order optimality conditions for boundary control problems with mixed pointwise constraints. SIAM J. Optim. 26, 1912–1943 (2016)

    Article  MathSciNet  Google Scholar 

  35. Sorger, G.: A dynamic common property resource problem with amenity value and extraction costs. Int. J. Econ. Theory 1, 3–19 (2005)

    Article  Google Scholar 

  36. Thuy, L.Q., Thanh, B.T., Toan, N.T.: On the no-gap second-order optimality conditions for a discrete optimal control problem with mixed constraints. J. Optim. Theory Appl. 173, 421–442 (2017)

    Article  MathSciNet  Google Scholar 

  37. Toan, N.T., Thuy, L.Q.: Second-order necessary optimality conditions for a discrete optimal control problem with mixed constraints. J. Glob. Optim. 64, 533–562 (2016)

    Article  MathSciNet  Google Scholar 

  38. Tuyen, N.V., Huy, N.Q., Kim, D.S.: Strong second-order Karush–Kuhn–Tucker optimality conditions for vector optimization. Appl. Anal. 99, 103–120 (2020)

  39. Vroemen, B., De Jager, B.: Multiobjective control: an overview. In: Proceeding of the 36th IEEE Conference on Decision and Control, San Diego CA, pp. 440–445 (1997)

  40. Yang, X.Q., Teo, K.L.: Necessary optimality conditions for bicriterion discrete time optimal control problems. J. Aust. Math. Soc. Ser. B. 40, 392–402 (1999)

    Article  Google Scholar 

  41. Zavala, V.M., Flores-Tlacuahuac, A.: Stability of multiobjective predictive control: a utopia-tracking approach. Automatica 48, 2627–2632 (2012)

    Article  MathSciNet  Google Scholar 

  42. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)

    Article  MathSciNet  Google Scholar 

  43. Zhu, Q.J.: Hamiltonian necessary conditions for a multiobjective optimal control problems with endpoint constraints. SIAM J. Control Optim. 39, 97–112 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for careful reading and constructive comments. A part of this work was done while the third author was visiting Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank VIASM for support and hospitality. The research of the fourth author was supported by the National Natural Science Foundation of China (11771067), the Applied Basic Project of Sichuan Province (2019YJ0204) and the Fundamental Research Funds for the Central Universities (ZYGX2019J095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Toan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toan, N.T., Thuy, L.Q., Van Tuyen, N. et al. Second-order KKT optimality conditions for multiobjective discrete optimal control problems . J Glob Optim 79, 203–231 (2021). https://doi.org/10.1007/s10898-020-00935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00935-7

Keywords

Mathematics Subject Classification