Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust constrained best approximation with nonconvex constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider the set D of inequalities with nonconvex constraint functions in the face of data uncertainty. We show under a suitable condition that “perturbation property” of the robust best approximation to any \(x\in {\mathbb {R}}^n\) from the set \(\tilde{K}:={{\bar{C}}} \cap D\) is characterized by the strong conical hull intersection property (strong CHIP) of \({\bar{C}}\) and D. The set C is an open convex subset of \({\mathbb {R}}^n\) and the set D is represented by \(D:=\{x\in {\mathbb {R}}^n: g_{j}(x,v_j)\le 0, \; \forall \; v_j\in V_j, \; j=1,2,\ldots ,m\},\) where the functions \(g_j:{\mathbb {R}}^n\times V_j\longrightarrow {\mathbb {R}}, \; j=1,2,\ldots ,m,\) are continuously Fréchet differentiable that are not necessarily convex, and \(v_j\) is the uncertain parameter which belongs to an uncertainty set \(V_j\subset {\mathbb {R}}^{q_j}, \; j=1,2,\ldots ,m.\) This is done by first proving a dual cone characterization of the robust constraint set D. Finally, following the robust optimization approach, we establish Lagrange multiplier characterizations of the robust constrained best approximation that is immunized against data uncertainty under the robust nondegeneracy constraint qualification. Given examples illustrate the nature of our assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  2. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization, Princeton Series in Applied Mathematics (2009)

  3. Bertsemas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  5. Deutsch, F.: The role of conical hull intersection property in convex optimization and approximation. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  6. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)

    Book  Google Scholar 

  7. Deutsch, F., Li, W., Swetits, J.: Fenchel duality and the strong conical hull intersection property. J. Optim. Theory Appl. 102, 681–695 (1999)

    Article  MathSciNet  Google Scholar 

  8. Deutsch, F., Li, W., Ward, J.D.: A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory 90, 385–444 (1997)

    Article  MathSciNet  Google Scholar 

  9. Deutsch, F., Li, W., Ward, J.D.: Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property. SIAM J. Optim. 10, 252–268 (1999)

    Article  MathSciNet  Google Scholar 

  10. Ho, Q.: Necessary and sufficient KKT optimality conditions in non-convex optimization. Optim. Lett. (2016). https://doi.org/10.1007/s11590-016-1054-0

    Article  MATH  Google Scholar 

  11. Jeyakumar, V., Mohebi, H.: A global approach to nonlinearly constrained best approximation. Numer. Funct. Anal. Optim. 26(2), 205–227 (2005)

    Article  MathSciNet  Google Scholar 

  12. Jeyakumar, V., Mohebi, H.: Limiting $\epsilon $-subgradient characterization of constrained best approximation. J. Approx. Theory 135(2), 145–159 (2005)

    Article  MathSciNet  Google Scholar 

  13. Jeyakumar, V., Mohebi, H.: Characterizing best approximation from a convex set without convex representation. J. Approx. Theory 239, 113–127 (2019)

    Article  MathSciNet  Google Scholar 

  14. Jeyakumar, V., Wolkowicz, H.: Generalization of Slater’s constraint qualification for infinite convex program. Math. Program. 57(1), 85–102 (1992)

    Article  MathSciNet  Google Scholar 

  15. Jeyakumar, V., Wang, J.H., Li, G.: Lagrange multiplier characterization of robust best approximation under data uncertainty. J. Math. Anal. Appl. 393, 285–297 (2012)

    Article  MathSciNet  Google Scholar 

  16. Lasserre, J.B.: On representation of the feasible set in convex optimization. Optim. Lett. 4, 1–5 (2010)

    Article  MathSciNet  Google Scholar 

  17. Li, C., Jin, X.: Nonlinearly constrained best approximation in Hilbert spaces: the strong CHIP, and the basic constraint qualification. SIAM J. Optim. 13(1), 228–239 (2002)

    Article  MathSciNet  Google Scholar 

  18. Li, C., Ng, K.F.: On best approximation by nonconvex sets and perturbation of nonconvex inequality systems in Hilbert spaces. SIAM J. Optim. 13, 726–744 (2002)

    Article  MathSciNet  Google Scholar 

  19. Li, C., Ng, K.F.: On extension of Fenchel duality and its application. SIAM J. Optim. 19, 1489–1509 (2008)

    Article  MathSciNet  Google Scholar 

  20. Rudin, W.: Functional Analysis. TATA McGraw-Hill Publishing Company LTD, New Delhi (1989)

    MATH  Google Scholar 

  21. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  22. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer, New York (1970)

    Book  Google Scholar 

  23. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, London (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referee for his/her useful suggestions regarding an earlier version of this paper. The comments of the referee were very useful and they helped us to improve the paper significantly. The first author was partially supported by Mahani Mathematical Research Center, Iran, Grant No. 97/3267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebi, H., Salkhordeh, S. Robust constrained best approximation with nonconvex constraints. J Glob Optim 79, 885–904 (2021). https://doi.org/10.1007/s10898-020-00957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00957-1

Keywords

Mathematics Subject Classification