Abstract
The “finite intersection property” for bifunctions is introduced and its relationship with generalized monotonicity properties is studied. Some characterizations are considered involving the Minty equilibrium problem. Also, some results concerning existence of equilibria and quasi-equilibria are established recovering several results in the literature. Furthermore, we give an existence result for generalized Nash equilibrium problems and variational inequality problems.
Similar content being viewed by others
Notes
As in the book Functional Analysis by Rudin, a topological vector space includes in its definition that the underlying topology is Hausdorff separated
References
Aussel, D., Cotrina, J.: Quasimonotone quasivariational inequalities: existence results and applications. J. Optim. Theory Appl. 158, 637–652 (2013)
Aussel, D., Cotrina, J., Iusem, A.: An existence result for quasi-equilibrium problems. J. Convex Anal. 24, 55–66 (2017)
Aussel, D., Dutta, J.: Generalized Nash equilibrium problem, variational inequality and quasiconvexity. Oper. Res. Lett. 36(4), 461–464 (2008)
Aussel, D., Dutta, J., Pandit, T.: About the Links Between Equilibrium Problems and Variational Inequalities, pp. 115–130. Springer, Singapore (2018)
Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121(2), 445–450 (2004)
Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator, and quasi-convex programming. SIAM J. Optim. 16(2), 358–367 (2005)
Bianchi, M., Kassay, G., Pini, R.: Existence of equilibria via Ekeland’s principle. J. Math. Anal. 305, 502–512 (2005)
Bianchi, M., Pini, R.: A note on equilibrium problems with properly quasimonotone bifunctions. J. Glob. Optim. 20, 67–76 (2001)
Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124(1), 79–92 (2005)
Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90(1), 31–43 (1996)
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 1–23 (1994)
Castellani, M., Giuli, M.: Refinements of existence results for relaxed quasimonotone equilibrium problems. J. Glob. Optim. 57, 1213–1227 (2013)
Castellani, M., Giuli, M.: An existence result for quasiequilibrium problems in separable Banach spaces. J. Math. Anal. Appl. 425, 85–95 (2015)
Castellani, M., Giuli, M.: Ekeland’s principle for cyclically monotone equilibrium problems. Nonlinear Anal. RWA 32, 213–228 (2016)
Chaldi, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105(2), 299–323 (2000)
Cotrina, J., García, Y.: Equilibrium problems: existence results and applications. Set-Valued Var. Anal 26, 159–177 (2018)
Cotrina, J., Zúñiga, J.: Quasi-equilibrium problems with non-self constraint map. J. Glob. Optim. 75, 177–197 (2019)
Daniilidis, A., Hadjisavvas, N.: On the subdifferentials of quasiconvex and pseudoconvex functions and cyclic monotonicity. J. Math. Anal. Appl. 237, 30–42 (1999)
Dugundji, J., Granas A.: Fixed point theory. Number v. 1 in Monografie matematyczne. PWN-Polish Scientific Publishers (1982)
Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007)
Fan, K.: A generalization of tychonoff’s fixed point theorem. Mathematische Annalen 142(3), 305–310 (1961)
Flores-Bazán, F.: Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case. SIAM J. Optim. 11(3), 675–690 (2001)
Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics. Springer, New York (2003)
Hadjisavvas, N., Khatibzadeh, H.: Maximal monotonicity of bifunctions. Optimization 59(2), 147–160 (2010)
Hu, M., Fukushima, M.: Multi-leader-follower games: models, methods and applications. J. Oper. Res. Soc. Jpn. 58(1), 1–23 (2015)
Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116(1), 259–273 (2009)
Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52(2), 621–635 (2003)
John, R.: A note on minty variational inequalities and generalized monotonicity. In: Hadjisavvas, N., Martínez-Legaz, J.E., Penot, J.-P. (eds.) Generalized Convexity and Generalized Monotonicity: Proceedings of the 6th International Symposium on Generalized Convexity/Monotonicity, Samos, September 1999, pp. 240–246. Springer, Berlin (2001)
Khanh, P.Q., Quan, N.H.: Versions of the Weierstrass theorem for bifunctions and solution existence in optimization. SIAM J. Optim. 29(2), 1502–1523 (2019)
Nasri, M., Sosa, W.: Equilibrium problems and generalized Nash games. Optimization 60, 1161–1170 (2011)
Nessah, R., Tian, G.: Existence of solution of minimax inequalities, equilibria in games and fixed points without convexity and compactness assumptions. J. Optim. Theory Appl. 157, 75–95 (2013)
Nessah, R., Tian, G.: On the existence of nash equilibrium in discontinuous games. Econ. Theory 61, 515–540 (2016)
Nikaidô, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 52, 807–815 (1955)
Oettli, W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam 22, 213–22 (1997)
Rosen, J.: Existence and uniqueness of equilibrium points for concave \(n\)-person games. Econometrica 33, 520–534 (1965)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cotrina, J., Svensson, A. The finite intersection property for equilibrium problems. J Glob Optim 79, 941–957 (2021). https://doi.org/10.1007/s10898-020-00961-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-020-00961-5
Keywords
- Quasi-equilibrium problem
- Generalized Nash equilibrium problem
- Variational inequality
- Set-valued map
- Generalized monotonicity
- Finite intersection property