Abstract
A commercially available calorimeter has been used to investigate the specific heat of a high-quality K\(_{0.71}\)Na\(_{0.29}\)Fe\(_2\)As\(_2\)single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range \(0.02 \, \mathrm{K} \le T \le 0.54 \, \mathrm{K}\). The data of the K\(_{0.71}\)Na\(_{0.29}\)Fe\(_2\)As\(_2\) crystal imply the presence of a large \(T^2\) contribution to the specific heat which gives evidence of \(d\)-wave order parameter symmetry in the superconducting state. To improve the measurements, a novel design for a calorimeter with a paramagnetic temperature sensor is presented. It promises a temperature resolution of \(\Delta T \approx 0.1 \, \mathrm{\mu K}\) and an addenda heat capacity less than \(200 \, \mathrm{pJ/K}\) at \( T < 100 \, \mathrm{mK}\).
Similar content being viewed by others
Notes
Apiezon Products, MI Materials Ltd, Hibernia Way, Trafford Park, Manchester M32 0ZD, United Kingdom.
National Instruments Corp., 11500 N Mopac Expwy, Austin, TX 78759–3504, USA.
Hightech Development Leiden, Zeeforel 4, 2318 MP Leiden, The Netherlands.
References
G.R. Stewart, Rev. Sci. Instr. 54, 1 (1983)
M. Abdel-Hafiez et al., Phys. Rev. B 87, 180507(R) (2013)
M. Abdel-Hafiez et al., Phys. Rev. B 85, 134533 (2012)
Quantum Design Inc, 6325 Lusk Boulevard, San Diego, CA 92121–3733, USA.
J.S. Hwang, K.J. Lin, C. Tien, Rev. Sci. Inst. 68, 94 (1997)
A. Netsch et al., AIP Conf. Proc. 850, 1593 (2006)
J.M. Ziman, Adv. Phys. 10, 1–56 (1961)
D. Smith, F. Fickett, J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995)
H. J. Schink and H. V. Lohneysen, Cryogenics 21, 591–592 (1981).
Y.E. Volokitin et al., Cryogenics 34, 771–773 (1994)
J. Ho et al., Rev. Sci Instrum. 36, 1382 (1965)
I.I. Mazin, Nature 464, 183 (2010)
L. Ding et al., Phys. Rev. B 77, 180510(R) (2008)
U. Welp et al., Phys. Rev. B 79, 094505 (2009)
U. Stockert et al., Phys. Rev. B 83, 224512 (2011)
M. Abdel-Hafiez et al., J. Phys.: Conf. Ser. 391, 012120 (2012)
F. Hardy et al., Phys. Rev. Lett. 111, 27002 (2013)
R.E. Schwall et al., Rev. Sci. Instrum. 46, 1054 (1975)
C. Enss et al., J. Low Temp. Phys. 121, 137–177 (2000)
A. Fleischmann, C. Enss, G. M. Seidel, Topics of Applied Physics, Cryogenic particle detection (C. Enss ed.), Vol. 99, (Springer, Berlin Heidelberg 2005). pp. 151–216
A. Fleischmann et al., AIP Conf. Proc. 1185, 571–578 (2009)
C. Pies et al., J. Low Temp. Phys. 167, 269 (2012)
D.L. Martin, Phys. Rev. B 8, 5357–6360 (1973)
Acknowledgments
Valuable discussions with S. Kempf, C. Pies, and A. Reiser are gratefully acknowledged. This work was supported by the DFG through Projects KL1824/6, WU595/3-1, BU887/15-1, En299/5-1 and by the European Community Research Infrastructures under the FP7 Capacities Specific Program, MICROKELVIN project number 228464.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reifenberger, A., Hempel, M., Vogt, P. et al. Specific Heat of K\(_{0.71}\)Na\(_{0.29}\)Fe\(_2\)As\(_2\) at Very Low Temperatures. J Low Temp Phys 175, 755–763 (2014). https://doi.org/10.1007/s10909-014-1168-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-014-1168-7