Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bandwidth and Aliasing in the Microwave SQUID Multiplexer

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The microwave SQUID multiplexer (μmux) has enabled higher bandwidth or higher channel counts across a wide range of experiments in particle physics, astronomy, and spectroscopy. The large multiplexing factor coupled with recent commercial availability of microwave components and warm electronics readout systems make it an attractive candidate for systems requiring large cryogenic detector counts. Since the multiplexer is considered for both bolometric and calorimetric applications across several orders of magnitude of signal frequencies, understanding the bandwidth of the device and its interaction with readout electronics is key to appropriately designing and engineering systems. Here, we discuss several important factors contributing to the bandwidth properties of \(\mu\)mux systems, including the intrinsic device bandwidth, interactions with warm electronics readout systems, and aliasing. We present simulations and measurements of \(\mu\)mux devices coupled with SLAC Microresonator RF (SMuRF) tone-tracking electronics and discuss several implications for future experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used to generate the plots and conclusions in these proceedings are available from the corresponding author on reasonable request.

References

  1. A. Cukierman et al., Microwave multiplexing on the Keck array. J. Low Temp. Phys. 199, 858–866 (2020). https://doi.org/10.1007/s10909-019-02296-2

    Article  ADS  Google Scholar 

  2. N. Galitzki et al., The Simons Observatory: instrument and overview. Proc. SPIE 10708, 1070804 (2018). https://doi.org/10.1117/12.2312985

    Article  Google Scholar 

  3. The Lynx Team, The Lynx Mission Concept Study Interim Report (2018). arXiv:1809.09642

  4. J.A.B. Mates et al., Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing. Appl. Phys. Lett. 111, 062601 (2017). https://doi.org/10.1063/1.4986222

    Article  ADS  Google Scholar 

  5. D.A. Bennett et al., Microwave SQUID multiplexing for the Lynx x-ray microcalorimeter. J. Astron. Telesc. Instrum. Syst. 5(2), 021007 (2019). https://doi.org/10.1117/1.JATIS.5.2.021007

    Article  ADS  Google Scholar 

  6. A. Puiu et al., Updates on the transition-edge sensors and multiplexed readout for HOLMES. J. Low Temp. Phys. 193, 1167 (2018). https://doi.org/10.1007/s10909-018-1950-z

    Article  ADS  Google Scholar 

  7. S.W. Henderson et al., Highly-multiplexed microwave SQUID readout using the SLAC microresonator radio frequency (SMuRF) electronics for future CMB and sub-millimeter surveys. Proc. SPIE 10708, 1070819 (2018). https://doi.org/10.1117/12.2314435

    Article  Google Scholar 

  8. K.D. Irwin, K.W. Lehnert, Microwave SQUID multiplexer. Appl. Phys. Lett. 85, 2107 (2004). https://doi.org/10.1063/1.1791733

    Article  ADS  Google Scholar 

  9. J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Demonstration of a multiplexer of dissipationless superconducting quantum interference devices. Appl. Phys. Lett. 92, 023514 (2008). https://doi.org/10.1007/s10909-012-0518-6

    Article  ADS  Google Scholar 

  10. M. Wegner, N. Karcher, O. Krömer, D. Richter, F. Ahrens, O. Sander, S. Kempf, M. Weber, C. Enss, Microwave squid multiplexing of metallic magnetic calorimeters: status of multiplexer performance and room-temperature readout electronics development. J. Low Temp. Phys. 193, 462 (2004). https://doi.org/10.1007/s10909-018-1878-3

    Article  ADS  Google Scholar 

  11. B. Dober et al., A microwave SQUID multiplexer optimized for bolometric applications. Appl. Phys. Lett. 118, 062601 (2021). https://doi.org/10.1063/5.0033416

    Article  ADS  Google Scholar 

  12. The CMB-S4 Collaboration, CMB-S4 Technology Book (2017). arXiv:1706.02464

  13. S. Gordon et al., An open source, FPGA-based LeKID readout for PLAST-TNG: pre-flight results. J. Astron. Instrum. (2016). https://doi.org/10.1142/S2251171716411038

    Article  Google Scholar 

  14. N. Fruitwala et al., Second generation readout for large format photon counting microwave kinetic inductance detectors. Rev. Sci. Instrum. 91, 124705 (2020). https://doi.org/10.1063/5.0029457

    Article  ADS  Google Scholar 

  15. J.A.B. Mates, The microwave SQUID multiplexer. PhD thesis (2011). ISBN:978-1-124-62108-1

  16. L. Moncelsi et al., Receiver development for BICEP array, a next-generation CMB polarimeter at the South Pole. Proc. SPIE 11453, 1145314 (2020). https://doi.org/10.1117/12.2561995

    Article  Google Scholar 

  17. M. Salatino et al., The design of the Ali CMB polarization telescope receiver. Proc. SPIE 11453, 114532A (2020). https://doi.org/10.1117/12.2560709

    Article  Google Scholar 

  18. M. Sandberg, C.M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008). https://doi.org/10.1063/1.2929367

    Article  ADS  Google Scholar 

  19. J. Zmuidzinas, Superconducting microresonators: physics and applications. Annu. Rev. Condens. Matt. Phys. 3, 169–214 (2012). https://doi.org/10.1145/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  20. J.S. Gao, J. Zmuidzinas, B.A. Mazin, H.G. Leduc, P.K. Day, Noise properties of superconducting coplanar waveguide microwave resonators. Appl. Phys. Lett. 90, 102507 (2007). https://doi.org/10.1063/1.2711770

    Article  ADS  Google Scholar 

  21. C. Yu, et al. SLAC microresonator RF (SMuRF) electronics: a tone-tracking readout system for microwave resonator-based cryogenic detector arrays (in prep)

Download references

Acknowledgements

The authors thank Kent Irwin for useful discussions. CY was supported in part by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1656518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Ahmed, Z., Connors, J.A. et al. Bandwidth and Aliasing in the Microwave SQUID Multiplexer. J Low Temp Phys 209, 589–597 (2022). https://doi.org/10.1007/s10909-022-02783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02783-z

Keywords