Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Phonon and Charge Signals from IR and X Excitation in the SELENDIS Ge Cryogenic Detector

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The aim of the SELENDIS project within the EDELWEISS collaboration is to observe single e\(^-\)h\(^+\) pairs in lightweight (3.3 g) cryogenic germanium bolometers with charge and phonon readout at biases up to \(\sim 100\) V. These devices are ideal to characterize in detail the mechanism of charge creation and collection in cryogenic germanium detectors. Electron–hole pairs are produced in the bulk of the detector either by the injection of pulsed IR laser or by neutron activation of germanium inducing the K, L and M lines from \(^{71}\)Ge electron capture decays. Low-energy laser pulses are also used to probe the single e\(^-\)h\(^+\) pair sensitivity of Ge bolometers. Preliminary results are used to compare these two modes of charge creation, an important step toward a detailed characterization of Ge bolometers for their use in sub-MeV dark matter searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \(\eta = 1\) is assumed for 1550 nm photons

References

  1. L. Hehn et al., EDELWEISS collaboration. Eur. Phys. J. C 76, 548 (2016). https://doi.org/10.1140/epjc/s10052-016-4388-y

  2. R. Agnese et al., Phys. Rev. Lett. 121, 051301, Erratum Phys. Rev. Lett. 122, 069901 (2019)

  3. Q. Arnaud et al., (EDELWEISS Collaboration), Phys. Rev. Lett. 125, 141301 (2020)

  4. M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, arXiv:1707.04591

  5. H. An, M. Pospelov, J. Pradler, A. Ritz, Phys. Lett. B 747, 331 (2015). arXiv:1412.8378

  6. Y. Hochberg, T. Lin, K.M. Zurek, Phys. Rev. D 95, 023013 (2017). arXiv:1608.01994

  7. R. Essig et al., J. High Energy Phys. 2016, 46 (2016). arXiv:1509.01598

  8. M.P. Chapellier et al., Physica B 284–288, 2135–2136 (2000)

    Article  ADS  Google Scholar 

  9. J. Domange, A. Broniatowski, E. Olivieri, M. Chapellier, L. Dumoulin, AIP Conf. Proc. 1185(1), 314–317 (2009). https://doi.org/10.1063/1.3292341

    Article  ADS  Google Scholar 

  10. E. E. Haller et al., Proc. SPIE 2198, Instrumentation in Astronomy VIII, (1 June 1994); https://doi.org/10.1117/12.176771

  11. https://www.cryoconcept.com/ (accessed on Oct, 2021)

  12. E. Armengaud et al., (EDELWEISS Collaboration), JINST 12, P08010 (2017). arXiv:1706.01070

  13. Q. Arnaud et al. (EDELWEISS Collaboration), Phys. Rev. Lett. 125, 141301

  14. https://www.aerodiode.com/ (accessed on May 18th, 2021)

  15. J. Colas and the RICOCHET collaboration, J. Low Temp. Phys. This Special Issue (2021)

  16. R. Brun, F. Rademakers, in Proceedings of AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A, vol. 389, pp. 81–86 (1997)

  17. B. Neganov, V. Trofimov, USSR patent No. 1037771, 1981; Otkrytializobreteniya, vol. 146, pp. 215 (1985)

  18. P.N. Luke, Appl. Phys. 64, 6858 (1988)

    Article  Google Scholar 

  19. J.C. Culbertson, R.M. Westervelt, E.E. Haller, Phys. Rev. B 34, 6980–6986 (1986)

    Article  ADS  Google Scholar 

  20. S.M. Sze, Physics of Semiconductor Devices (Wiley, Hoboken, 1981)

    Google Scholar 

  21. G.G. Macfarlane et al., Phys. Rev. 108, 1377–1383 (1957)

    Article  ADS  Google Scholar 

  22. F. Ponce, W. Page, P.L. Brink et al., Modeling of impact ionization and charge trapping in SuperCDMS HVeV detectors. J. Low Temp. Phys. 199, 598–605 (2020). https://doi.org/10.1007/s10909-020-02349-x

    Article  ADS  Google Scholar 

  23. J. Gascon et al., J. Low Temp. Phys. This Special Issue (2021)

Download references

Acknowledgements

We acknowledge the support from the EDELWEISS Collaboration, the Ricochet Collaboration, LabEx Lyon Institute of Origins (ANR-10-LABX-0066), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement ERC-StG-CENNS 803079 and Marie Skłodowska-Curie Grant Agreement No. 83853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lattaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lattaud, H., Arnaud, Q., Billard, J. et al. Phonon and Charge Signals from IR and X Excitation in the SELENDIS Ge Cryogenic Detector. J Low Temp Phys 209, 263–270 (2022). https://doi.org/10.1007/s10909-022-02826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02826-5

Keywords