Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Boundary Condition Capturing for Multiphase Interfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

This review paper begins with an overview of the boundary condition capturing approach to solving problems with interfaces. Although the authors’ original motivation was to extend the ghost fluid method from compressible to incompressible flow, the elliptic nature of incompressible flow quickly quenched the idea that ghost cells could be defined and used in the usual manner. Instead the boundary conditions had to be implicitly captured by the matrix formulation itself, leading to the novel approach. We first review the work on the variable coefficient Poisson equation, noting that the simplicity of the method allowed for an elegant convergence proof. Simplicity and robustness also allowed for a quick extension to three-dimensional two-phase incompressible flows including the effects of viscosity and surface tension, which is discussed subsequently. The method has enjoyed popularity in both computational physics and computer graphics, and we show some comparisons with the traditional delta function approach for the visual simulation of bubbles. Finally, we discuss extensions to problems where the velocity is discontinuous as well, as is the case for premixed flames, and show an example of multiple interacting liquids that includes all of the aforementioned phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedkiw R., Aslam T., Merriman B., Osher S. (1999). A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492

    Article  MATH  MathSciNet  Google Scholar 

  2. Fedkiw R., Aslam T., Xu S. (1999). The Ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys. 154, 393–427

    Article  MATH  MathSciNet  Google Scholar 

  3. Nguyen, D., Gibou, F., and Fedkiw, R. (2002). A fully conservative ghost fluid method and stiff detonation waves. In 12th Int. Detonation Symp., San Diego, CA.

  4. Liu X.-D., Fedkiw R., Kang M. (2000). A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 154, 151

    Article  MathSciNet  Google Scholar 

  5. Liu X.-D., Sideris T.C. (2003). Convergence of the ghost fluid method for elliptic equations with interfaces. Math. Computat. 72(244): 1731–1746

    Article  MATH  MathSciNet  Google Scholar 

  6. Kang M., Fedkiw R., Liu X.-D. (2000). A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360

    Article  MATH  MathSciNet  Google Scholar 

  7. Unverdi S.O., Tryggvason G. (1992). A front-tracking method for viscous, incompressible, multifluid flows. J. Comput. Phys. 100, 25–37

    Article  MATH  Google Scholar 

  8. Sussman M., Smereka P., Osher S. (1994). A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159

    Article  MATH  Google Scholar 

  9. Brackbill J.U., Kothe D.B., Zemach C. (1992). A continuum method for modelling surface tension. J. Comput. Phys. 100, 335–353

    Article  MATH  MathSciNet  Google Scholar 

  10. Tornberg A.-K., Engquist B. (2004). Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200(2): 462–488

    Article  MATH  MathSciNet  Google Scholar 

  11. Engquist B., Tornberg A.-K., Tsai R. (2005). Discretization of dirac delta functions in level set methods. J. Comput. Phys. 207(1): 28–51

    Article  MATH  MathSciNet  Google Scholar 

  12. Smereka P. (2006). The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. 211, 77–90

    Article  MATH  MathSciNet  Google Scholar 

  13. Leveque R.J., Li Z. (1994). The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numerical Anal. 31(4): 1019–1044

    Article  MATH  MathSciNet  Google Scholar 

  14. Li Z., Lai M.-C. (2001). The immersed interface method for the navier-stokes equations with singular forces. J. Comput. Phys. 171(2): 822–842

    Article  MATH  MathSciNet  Google Scholar 

  15. Hong J.-M., Kim C.-H. (2005). Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3): 915–920

    Article  MathSciNet  Google Scholar 

  16. Nguyen D., Fedkiw R., Jensen H. (2002). Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 721–728

    Google Scholar 

  17. Nguyen D., Fedkiw R., Kang M. (2001). A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172, 71–98

    Article  MATH  MathSciNet  Google Scholar 

  18. Losasso F., Shinar T., Selle A., Fedkiw R. (2006). Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25(3): 812–819

    Article  Google Scholar 

  19. Landau L.D., Lifshitz E.M. (1998). Fluid Mechanics, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  20. Fedkiw R., Liu X.-D. (1998). The ghost fluid method for viscous flows. In: Haferz M., (eds), Progress in Numerical Solutions of Partial Differential Equations. Arcachon, France

    Google Scholar 

  21. Popinet S., Zaleski S., (1999). A front-tracking algorithm for accurate representation of surface tension. Int. J. Numer. Meth. Fluids 30(6): 775–793

    Article  MATH  Google Scholar 

  22. Francois M.M., Cummins S.J., Dendy E.D., Kothe D.B., Sicilian J.M., Williams M.W. (2006). A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213(1): 141–173

    Article  MATH  Google Scholar 

  23. Rasmussen N., Enright D., Nguyen D., Marino S., Sumner N., Geiger W., Hoon S., Fedkiw R. (2004). Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 193–202.

  24. Li J., Renardy Y., Renardy M. (2000). Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Phys. Fluids 12(2): 269–282

    Article  Google Scholar 

  25. Juric D., Tryggvason G. (1998). Computations of boiling flows. Int. J. Multiphase Flow 24, 387–410

    Article  Google Scholar 

  26. Qian J., Tryggvason G., Law C.K. (1998). A front method for the motion of premixed flames. J. Comput. Phys. 144, 52–69

    Article  Google Scholar 

  27. Son G., Dir V.K. (1998). Numerical simulation of film boiling near critical pressure with a level set method. J. Heat Transfer 120, 183–192

    Google Scholar 

  28. Welch S., Wilson J. (2000). A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160, 662–682

    Article  MATH  Google Scholar 

  29. Enright D., Fedkiw R., Ferziger J., Mitchell I. (2002). A hybrid particle level set method for improved interface capturing. J. Comput. Phys.. 183, 83–116

    Article  MATH  MathSciNet  Google Scholar 

  30. Merriman B., Bence J., Osher S. (1994). Motion of multiple junctions: A level set approach. J. Comput. Phys. 112, 334–363

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Fedkiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, JM., Shinar, T., Kang, M. et al. On Boundary Condition Capturing for Multiphase Interfaces. J Sci Comput 31, 99–125 (2007). https://doi.org/10.1007/s10915-006-9120-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9120-x

Keywords