We develop a fast sweeping method for static Hamilton–Jacobi equations with convex Hamiltonians. Local solvers and fast sweeping strategies apply to structured and unstructured meshes. With causality correctly enforced during sweepings numerical evidence indicates that the fast sweeping method converges in a finite number of iterations independent of mesh size. Numerical examples validate both the accuracy and the efficiency of the new method.
Similar content being viewed by others
References
Boue M., Dupuis P. (1999). Markov chain approximations for deterministic control problems with affine dynamics and quadratic costs in the control. SIAM J. Numer. Anal. 36, 667–695
Burridge R., de Hoop M.V., Miller D., Spencer C. (1998). Multiparameter inversion in anisotropic media. Geophys. J. Internat. 134, 757–777
Cecil T., Osher S.J., Qian J. (2006). Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension. J. Comp: Phys. 213, 458–473
Cockburn B., Qian J. (2002). Continuous dependence results for Hamilton–Jacobi equations. In: Estep D., Tavener S. (eds) Collected Lectures on the Preservation of Stability Under Discretization. SIAM, Philadelphia, PA, pp. 67–90
Crandall M.G., Lions P.L. (1983). Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42
Crandall M.G., Lions P.L. (1984). Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43, 1–19
Dellinger, J. (1991). Anisotropic Seismic Wave Propagation. Ph.D. Thesis, Stanford University, Stanford, CA94305.
Dellinger, J., and Symes, W. W. (1997). Anisotropic finite-difference traveltimes using a Hamilton–Jacobi solver. In Proc. 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, Soc. Expl. Geophys., Tulsa, OK, pp. 1786–1789.
Gonzales R., Rofman E. (1985). On deterministic control problems: an approximation procedure for the optimal cost. I. the stationary problem. SIAM J. Control Optim. 23, 242–266
Gremaud P.A., Kuster C.M. (2006). Computational study of fast methods for the eikonal equations. SIAM J. Sci. Comput. 27, 1803–1816
Jiang G.S., Peng D. (2000). Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143
Jiang G.S., Shu C.W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228
Kao C.Y., Osher S.J., Tsai Y.-H. (2005). Fast sweeping method for static Hamilton–Jacobi equations. SIAM J. Numer. Anal. 42, 2612–2632
Kao C.Y., Osher S.J., Qian J. (2004). Lax–Friedrichs sweeping schemes for static Hamilton–Jacobi equations. J. Comput. Phys. 196, 367–391
Leung S., Qian J. (2006). An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals. Commun. Math. Sci. 4, 249–266
Lin C.T., Tadmor E. (2001). L 1-stability and error estimates for approximate Hamilton–Jacobi equations. Numer. Math. 88, 2163–2186
Liu X.D., Osher S.J., Chan T. (1994). Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212
Qian J., Symes W.W. (2001). Paraxial eikonal solvers for anisotropic quasi-P traveltimes. J. Comput. Phys. 173, 1–23
Qian J., Symes W.W. (2002). Adaptive finite difference method for traveltime and amplitude. Geophysics 67, 167–176
Qian J., Symes W.W. (2002). Finite-difference quasi-P traveltimes for anisotropic media. Geophysics 67, 147–155
Qian J., Symes W.W. (2002). Paraxial geometrical optics for quasi-P waves: theories and numerical methods. Wave Motion 35, 205–221
Qian J., Symes W.W. (2003). A paraxial formualtion for the viscosity solution of quasi-p eikonal equations. Comput. Math. Appl. 46, 1691–1701
Qian, J., Symes, W. W., and Dellinger, J. A. (2001). A full-aperture anisotropic eikonal solver for quasi-P traveltimes. In Proc. 71st Ann. Internat. Mtg., Expanded Abstracts, Soc. Expl. Geophys., Tulsa, OK, pp. 129–132
Qian J., Zhang Y.T., Zhao H.K. (2007). Fast sweeping methods for eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45, 83–107
Qin F., Schuster G.T. (1993). First-arrival traveltime calculation for anisotropic media. Geophysics 58, 1349–1358
Sethian J.A. (1996). Level Set Methods. Cambridge University Press, Cambridge
Sethian, J. A., and Vladimirsky, A. (2001). Ordered upwind methods for static Jacobi equations: theory and algorithms. In Proc. PAM-792. University of California at Berkeley, Berkeley, CA94720.
Tsai R., Cheng L.-T., Osher S.J., Zhao H.K. (2003). Fast sweeping method for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41, 673–694
Tsitsiklis J.N. (1995). Efficient algorithms for globally optimal rajectories. IEEE Tran. Automatic Control 40, 1528–1538
van Trier J., Symes W.W. (1991). Upwind finite-difference calculation of traveltimes. Geophysics 56, 812–821
Zhang, Y. T., Zhao, H. K., and Chen, S. (2005). Fixed-point iterative sweeping methods for static Hamilton–Jacobi equations. Methods Appl. Anal. (accepted).
Zhang Y.T., Zhao H.K., Qian J. (2006). High order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comp. 29, 25–56
Zhao H.K. (2005). Fast sweeping method for eikonal equations. Math. Comp. 74, 603–627
Zhao, H. K. (2006). Parallel implementations of the fast sweeping method. UCLA CAM06-13.
Zhao H.K., Osher S., Merriman B., Kang M. (2000). Implicit and non- shape reconstruction from unorganized points using variational level set method. Comput. Vis. Image Underst. 80, 295–319
Author information
Authors and Affiliations
Corresponding author
Additional information
In memory of Xu-Dong Liu.
Rights and permissions
About this article
Cite this article
Qian, J., Zhang, YT. & Zhao, HK. A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations. J Sci Comput 31, 237–271 (2007). https://doi.org/10.1007/s10915-006-9124-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-006-9124-6