Abstract
In this paper, we derive a posteriori error estimates of recovery type, and present the superconvergence analysis for the finite element approximation of distributed convex optimal control problems. We provide a posteriori error estimates of recovery type for both the control and the state approximation, which are generally equivalent. Under some stronger assumptions, they are further shown to be asymptotically exact. Such estimates, which are apparently not available in the literature, can be used to construct adaptive finite element approximation schemes and as a reliability bound for the control problems. Numerical results demonstrating our theoretical results are also presented in this paper.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000)
Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation. In: Iserles, A. (ed.) Acta Numerica 2001, pp. 1–102. Cambridge University Press, Cambridge (2001)
Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)
Carstensen, C., Verfürth, R.: Edge residual dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36, 1571–1587 (1999)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)
Haslinger, J., Neittaanmaki, P.: Finite Element Approximation for Optimal Shape Design. Wiley, Chichester (1989)
Huang, Y., Li, R., Liu, W., Yan, N.: Multi-adaptive mesh discretization for finite element approximation of constrained optimal control problems. SIAM. J. Control Optim. (to appear)
Li, R., Lin, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)
Krizek, M., Neitaanmaki, P., Stenberg, R.: Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates. Lectures Notes in Pure and Applied Mathematics, vol. 196. Dekker, New York (1998)
Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Element. Hebei University Press (1996) (in Chinese)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Liu, W., Yan, N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15, 285–309 (2001)
Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 73–99 (2001)
Liu, W., Yan, N.: A posteriori error estimates for control problems governed by Stokes equations. SIAM J. Numer. Anal. 40(5), 1850–1869 (2002)
Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93(3), 497–521 (2003)
Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control constrained, optimal control systems. Appl. Math. Optim. 8 (1982)
Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications. Dekker, New York (1994)
Oganesyan, L.A., Rukhovetz, L.A.: Study of the rate of convergence of variational difference scheme for second order elliptic equation in two-dimensional field with a smooth boundary. V.S.S.R. Comput. Math. Math. Phys. 9, 158–183 (1969)
Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)
Tiba, D., Troltzsch, F.: Error estimates for the discretization of state constrained convex control problems. Numer. Funct. Anal. Optim. 17, 1005–1028 (1996)
Verfurth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement. Wiley-Teubner, London (1996)
Yan, N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite filament approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190, 4289–4299 (2001)
Zhang, Z., Yan, N.: Recovery type a posteriori error estimates in finite element methods. Korean J. Comput. Appl. Math. 8, 235–251 (2001)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33, 1331–1382 (1992)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, R., Liu, W. & Yan, N. A Posteriori Error Estimates of Recovery Type for Distributed Convex Optimal Control Problems. J Sci Comput 33, 155–182 (2007). https://doi.org/10.1007/s10915-007-9147-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9147-7