Abstract
This paper presents a second-order accurate adaptive Godunov method for two-dimensional (2D) compressible multicomponent flows, which is an extension of the previous adaptive moving mesh method of Tang et al. (SIAM J. Numer. Anal. 41:487–515, 2003) to unstructured triangular meshes in place of the structured quadrangular meshes. The current algorithm solves the governing equations of 2D multicomponent flows and the finite-volume approximations of the mesh equations by a fully conservative, second-order accurate Godunov scheme and a relaxed Jacobi-type iteration, respectively. The geometry-based conservative interpolation is employed to remap the solutions from the old mesh to the newly resulting mesh, and a simple slope limiter and a new monitor function are chosen to obtain oscillation-free solutions, and track and resolve both small, local, and large solution gradients automatically. Several numerical experiments are conducted to demonstrate robustness and efficiency of the proposed method. They are a quasi-2D Riemann problem, the double-Mach reflection problem, the forward facing step problem, and two shock wave and bubble interaction problems.
Similar content being viewed by others
References
Abgrall, R.: How to prevent oscillations in multicomponent flow calculations: A quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)
Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)
Abgrall, R., Saurel, R.: Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186, 361–396 (2003)
Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. AIAA Paper No. 89-0366 (1989)
Beckett, G., Mackenzie, J.A., Robertson, M.L.: An r-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1, 805–826 (2006)
Brackbill, J.U.: An adaptive grid with directional control. J. Comput. Phys. 108, 38–50 (1993)
Cao, W.M., Huang, W.Z., Russell, R.D.: An r-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149, 221–244 (1999)
Ceniceros, H.D., Hou, T.Y.: An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172, 609–639 (2001)
Chertock, A., Kurganov, A.: Conservative locally moving mesh method for multifluid flows. In: Proc. 4th Inter. Sym. on Finite Volumes for Complex Appl., Marrakech, pp. 273–284 (2005)
Davis, S.F., Flaherty, J.E.: An adaptive finite element method for initial-boundary value problems for partial differential equations. SIAM J. Sci. Stat. Comput. 3, 6–27 (1982)
Di, Y.N., Li, R., Tang, T., Zhang, P.W.: Moving mesh finite element methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 26, 1036–1056 (2005)
Dvinsky, A.S.: Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476 (1991)
Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problem. J. Comput. Phys. 2, 306–331 (1968)
Godunov, S.K.: Finite difference method for numerical computation of discontinuous solution of the equations of fluid dynamics. Mat. Sb. 47, 271–306 (1959)
Han, J.Q., Tang, H.Z.: An adaptive moving mesh method for multidimensional ideal magnetohydrodynamics. J. Comput. Phys. 220, 791–812 (2007)
Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: Error analysis. Math. Comput. 62, 497–530 (1994)
Hu, C.Q., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)
Huang, W.Z.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005)
Huang, W.Z.: Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1, 276–310 (2006)
Jameson, A., Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA Paper No. 85-0435 (1985)
Jia, P.Y., Jiang, S., Zhao, G.P.: Two-dimensional compressible multimaterial flow calculations in a unified coordinate system. Comput. Fluids 35, 168–188 (2006)
Jiang, S., Ni, G.X.: A γ-model BGK scheme for compressible multifluids. Int. J. Numer. Meth. Fluids 46, 163–182 (2004)
Karni, S.: Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17, 1019–1039 (1996)
Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)
Larouturou, B.: How to preserve the mass fraction positive when computing compressible multi-component flows. J. Comput. Phys. 95, 59–84 (1991)
Li, R., Tang, T., Zhang, P.W.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001)
Li, R., Tang, T., Zhang, P.W.: A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393 (2002)
Lian, Y.S., Xu, K.: A gas-kinetic schemes for multimaterial flows and its application in chemical reactions. J. Comput. Phys. 163, 349–375 (2000)
Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part I: A new methodology with applications to 1D gas-gas and gas-water cases. Comput. Fluids 30, 291–314 (2001)
Miller, K., Miller, R.N.: Moving finite element I. SIAM J. Numer. Anal. 18, 1019–1032 (1981)
Niceno, B.: A two-dimensional quality mesh generator. http://www-dinma.univ.trieste.it/nirftc/research/easymesh/
Ren, W.Q., Wang, X.P.: An iterative grid redistribution method for singular problems in multiple dimensions. J. Comput. Phys. 159, 246–273 (2000)
Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)
Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)
Shyue, K.M.: A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions. J. Comput. Phys. 215, 219–244 (2006)
Tan, Z.J., Zhang, Z.R., Tang, T., Huang, Y.Q.: Moving mesh methods with locally varying time steps. J. Comput. Phys. 200, 347–367 (2004)
Tang, H.Z.: On the sonic point glitch. J. Comput. Phys. 202, 507–532 (2005)
Tang, H.Z.: A moving mesh method for the Euler flow calculations using a directional monitor function. Commun. Comput. Phys. 1, 656–676 (2006)
Tang, H.Z., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515 (2003)
Tang, H.Z., Tang, T., Zhang, P.W.: An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three-dimensions. J. Comput. Phys. 188, 543–572 (2003)
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (1999)
van Leer, B.: Towards the ultimate conservative difference schemes V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)
Wang, J., Liu, R.X.: A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems. Math. Comput. Simul. 53, 171–184 (2000)
Winslow, A.: Numerical solution of the quasi-linear Poisson equation. J. Comput. Phys. 1, 149–172 (1967)
Woodward, P.R., Colella, P.: The numerical simulation of two dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)
Xu, K.: BGK-based scheme for multicomponent flow calculations. J. Comput. Phys. 134, 122–133 (1997)
Zhang, Z.R.: Moving mesh method with conservative interpolation based on L 2-projection. Commun. Comput. Phys. 1, 930–944 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, G., Tang, H. & Zhang, P. Second-Order Accurate Godunov Scheme for Multicomponent Flows on Moving Triangular Meshes. J Sci Comput 34, 64–86 (2008). https://doi.org/10.1007/s10915-007-9162-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9162-8