Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Hybrid Multigrid-Schwarz Algorithms

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

J. Lottes and P. Fischer (J. Sci. Comput. 24:45–78, [2005]) studied many smoothers or preconditioners for hybrid Multigrid-Schwarz algorithms for the spectral element method. The behavior of several of these smoothers or preconditioners are analyzed in the present paper. Here it is shown that the Schwarz smoother that best performs in the above reference, is equivalent to a special case of the weighted restricted additive Schwarz, for which convergence analysis is presented. For other preconditioners which do not perform as well, examples and explanations are presented illustrating why this behavior may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: PETSc 2.0 user’s manual. Technical Report ANL-95/11—Revision 2.0.22, Argonne National Laboratory, April 1998. Available at http://www.mcs.anl.gov/petsc

  2. Benzi, M., Frommer, A., Nabben, R., Szyld, D.B.: Algebraic theory of multiplicative Schwarz methods. Numer. Math. 89, 605–639 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Bjørstad, P.E., Widlund, O.B.: To overlap or not to overlap: A note on a domain decomposition method for elliptic problems. SIAM J. Sci. Stat. Comput. 10, 1053–1061 (1989)

    Article  Google Scholar 

  4. Cai, X.-C., Farhat, C., Sarkis, M.: A minimum overlap restricted additive Schwarz preconditioner and applications to 3D flow simulations. Contemp. Math. 218, 479–485 (1998)

    MathSciNet  Google Scholar 

  5. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, T.F., Mathew, T.P.: Domain decomposition methods. In: Acta Numerica, pp. 61–143. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  7. Dryja, M., Widlund, O.B.: An additive variant of the Schwarz alternating method for the case of many subregions. Technical Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, New York University (1987)

  8. Dryja, M., Widlund, O.B.: Towards a unified theory of domain decomposition algorithms for elliptic problems. In: Chan, T., Glowinski, R., Périaux, J. (eds.) Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, Texas, 20–22 March 1989, pp. 3–21. SIAM, Philadelphia (1989)

    Google Scholar 

  9. Fischer, P.F., Lottes, J.W.: Hybrid Schwarz-Multigrid methods for the spectral element method: Extensions to Navier-Stokes. In: Kornhuber, R., Hoppe, R.H.W., Périaux, J., Pironneau, O., Widlund, O.B., Xu, J. (eds.) Proceedings of the Fifteenth International Conference on Domain Decomposition Methods, Berlin, Germany, 2003. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 35–49. Springer, Berlin (2005)

    Chapter  Google Scholar 

  10. Frommer, A., Szyld, D.B.: Weighted max norms, splittings, and overlapping additive Schwarz iterations. Numer. Math. 83, 259–278 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frommer, A., Szyld, D.B.: An algebraic convergence theory for restricted additive Schwarz methods using weighted max norms. SIAM J. Numer. Anal. 39, 463–479 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lottes, J.W., Fischer, P.F.: Hybrid Multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24, 45–78 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maday, Y., Muñoz, R., Patera, A.T., Rønquist, E.M.: Spectral element multigrid methods. In: de Groen, P., Beauwens, R. (eds.) Proc. of the IMACS Int. Symposium on Iterative Methods in Linear Algebra, Brussels, 1991, pp. 191–201. Elsevier, Amsterdam (1991)

    Google Scholar 

  14. Nabben, R., Szyld, D.B.: Convergence theory of restricted multiplicative Schwarz methods. SIAM J. Numer. Anal. 40, 2318–2336 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nabben, R., Szyld, D.B.: Schwarz iterations for symmetric positive semidefinite problems. SIAM J. Matrix Anal. Appl. 29, 98–116 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Patera, A.T.: A spectral element method for fluid dynamics—Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  MATH  Google Scholar 

  17. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications. Clarendon Press, Oxford (1999)

    MATH  Google Scholar 

  18. Rønquist, E.M., Patera, A.T.: Spectral element multigrid, I: Formulation and numerical results. J. Sci. Comput. 2, 389–406 (1987)

    Article  MathSciNet  Google Scholar 

  19. Schnitker, M.: Eine algebraische Konvergenztheorie der Schwarz-Verfahren für symmetrisch positiv definite Matrizen (An algebraic convergence theory of the Schwarz method for symmetric positive definite matrices). Schriftliche Hausarbeit der 1. Staatsprüfung (Undergraduate Thesis), Universität Bielefeld, Bielefeld, Germany (2002), in German

  20. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  21. Toselli, A., Widlund, O.B.: Domain Decomposition: Algorithms and Theory. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Szyld.

Additional information

S. Loisel and D.B. Szyld are supported in part by the U.S. Department of Energy under grant DE-FG02-05ER25672.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loisel, S., Nabben, R. & Szyld, D.B. On Hybrid Multigrid-Schwarz Algorithms. J Sci Comput 36, 165–175 (2008). https://doi.org/10.1007/s10915-007-9183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9183-3

Keywords