Abstract
J. Lottes and P. Fischer (J. Sci. Comput. 24:45–78, [2005]) studied many smoothers or preconditioners for hybrid Multigrid-Schwarz algorithms for the spectral element method. The behavior of several of these smoothers or preconditioners are analyzed in the present paper. Here it is shown that the Schwarz smoother that best performs in the above reference, is equivalent to a special case of the weighted restricted additive Schwarz, for which convergence analysis is presented. For other preconditioners which do not perform as well, examples and explanations are presented illustrating why this behavior may occur.
Similar content being viewed by others
References
Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: PETSc 2.0 user’s manual. Technical Report ANL-95/11—Revision 2.0.22, Argonne National Laboratory, April 1998. Available at http://www.mcs.anl.gov/petsc
Benzi, M., Frommer, A., Nabben, R., Szyld, D.B.: Algebraic theory of multiplicative Schwarz methods. Numer. Math. 89, 605–639 (2001)
Bjørstad, P.E., Widlund, O.B.: To overlap or not to overlap: A note on a domain decomposition method for elliptic problems. SIAM J. Sci. Stat. Comput. 10, 1053–1061 (1989)
Cai, X.-C., Farhat, C., Sarkis, M.: A minimum overlap restricted additive Schwarz preconditioner and applications to 3D flow simulations. Contemp. Math. 218, 479–485 (1998)
Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)
Chan, T.F., Mathew, T.P.: Domain decomposition methods. In: Acta Numerica, pp. 61–143. Cambridge University Press, Cambridge (1994)
Dryja, M., Widlund, O.B.: An additive variant of the Schwarz alternating method for the case of many subregions. Technical Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, New York University (1987)
Dryja, M., Widlund, O.B.: Towards a unified theory of domain decomposition algorithms for elliptic problems. In: Chan, T., Glowinski, R., Périaux, J. (eds.) Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, Texas, 20–22 March 1989, pp. 3–21. SIAM, Philadelphia (1989)
Fischer, P.F., Lottes, J.W.: Hybrid Schwarz-Multigrid methods for the spectral element method: Extensions to Navier-Stokes. In: Kornhuber, R., Hoppe, R.H.W., Périaux, J., Pironneau, O., Widlund, O.B., Xu, J. (eds.) Proceedings of the Fifteenth International Conference on Domain Decomposition Methods, Berlin, Germany, 2003. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 35–49. Springer, Berlin (2005)
Frommer, A., Szyld, D.B.: Weighted max norms, splittings, and overlapping additive Schwarz iterations. Numer. Math. 83, 259–278 (1999)
Frommer, A., Szyld, D.B.: An algebraic convergence theory for restricted additive Schwarz methods using weighted max norms. SIAM J. Numer. Anal. 39, 463–479 (2001)
Lottes, J.W., Fischer, P.F.: Hybrid Multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24, 45–78 (2005)
Maday, Y., Muñoz, R., Patera, A.T., Rønquist, E.M.: Spectral element multigrid methods. In: de Groen, P., Beauwens, R. (eds.) Proc. of the IMACS Int. Symposium on Iterative Methods in Linear Algebra, Brussels, 1991, pp. 191–201. Elsevier, Amsterdam (1991)
Nabben, R., Szyld, D.B.: Convergence theory of restricted multiplicative Schwarz methods. SIAM J. Numer. Anal. 40, 2318–2336 (2003)
Nabben, R., Szyld, D.B.: Schwarz iterations for symmetric positive semidefinite problems. SIAM J. Matrix Anal. Appl. 29, 98–116 (2006)
Patera, A.T.: A spectral element method for fluid dynamics—Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)
Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications. Clarendon Press, Oxford (1999)
Rønquist, E.M., Patera, A.T.: Spectral element multigrid, I: Formulation and numerical results. J. Sci. Comput. 2, 389–406 (1987)
Schnitker, M.: Eine algebraische Konvergenztheorie der Schwarz-Verfahren für symmetrisch positiv definite Matrizen (An algebraic convergence theory of the Schwarz method for symmetric positive definite matrices). Schriftliche Hausarbeit der 1. Staatsprüfung (Undergraduate Thesis), Universität Bielefeld, Bielefeld, Germany (2002), in German
Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)
Toselli, A., Widlund, O.B.: Domain Decomposition: Algorithms and Theory. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
S. Loisel and D.B. Szyld are supported in part by the U.S. Department of Energy under grant DE-FG02-05ER25672.
Rights and permissions
About this article
Cite this article
Loisel, S., Nabben, R. & Szyld, D.B. On Hybrid Multigrid-Schwarz Algorithms. J Sci Comput 36, 165–175 (2008). https://doi.org/10.1007/s10915-007-9183-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-007-9183-3