Abstract
This paper constructs multirate linear multistep time discretizations based on Adams-Bashforth methods. These methods are aimed at solving conservation laws and allow different timesteps to be used in different parts of the spatial domain. The proposed family of discretizations is second order accurate in time and has conservation and linear and nonlinear stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global timesteps—restricted by the largest value of the Courant number on the grid—and therefore results in more efficient computations. Numerical results obtained for the advection and Burgers’ equations confirm the theoretical findings.
Similar content being viewed by others
References
Andrus, J.F.: Numerical solution for ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16(4), 605–611 (1979)
Andrus, J.F.: Stability of a multi-rate method for numerical integration of ODEs. Comput. Math. Appl. 25(2), 3–14 (1993)
Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147(2), 411–425 (2002). ISSN 0377-0427. doi:10.1016/S0377-0427(02)00476-4
Chakravarthy, S., Osher, S.: Numerical experiments with the Osher upwind scheme for the Euler equations. AIAA J. 21, 241–1248 (1983)
Chakravarthy, S., Osher, S.: Computing with high-resolution upwind schemes for hyperbolic equations. Lect. Appl. Math. 22, 57–86 (1985)
Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33(3), 239–278 (2007). doi:10.1007/s10915-007-9151-y
Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)
Engstler, C., Lubich, C.: Multirate extrapolation methods for differential equations with different time scales. Computing 58(2), 173–185 (1997). ISSN 0010-485X
Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT 24, 484–502 (1984)
Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). ISSN 0036-1445
Günther, M., Rentrop, P.: Multirate ROW-methods and latency of electric circuits. Appl. Numer. Math. (1993)
Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge-Kutta methods. BIT 41(3), 504–514 (2001)
Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)
Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)
Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2006)
Hundsdorfer, W., Koren, B., van Loon, M.: A positive finite-difference advection scheme. J. Comput. Phys. 117(1), 35–46 (1995)
Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41(2), 605–623 (2003)
Kato, T., Kataoka, T.: Circuit analysis by a new multirate method. Electr. Eng. Jpn. 126(4), 55–62 (1999)
Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31(3), 482–528 (1991). ISSN 0006-3835. doi:http://dx.doi.org/10.1007/BF01933264
Kværnø, A.: Stability of multirate Runge-Kutta schemes. Int. J. Differ. Equ. Appl. 1(1), 97–105 (2000)
Kværnø, A., Rentrop, P.: Low order multirate Runge-Kutta methods in electric circuit simulation (1999)
Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)
Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55(2), 213–223 (1989)
Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Math. Comput. 55(2), 177–199 (1991)
LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)
Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21(5), 955–984 (1984)
Osher, S., Chakravarthy, S.: Very high order accurate TVD schemes. In Oscillation Theory, Computation, and Methods of Compensated Compactness. IMA Vol. Math. Appl. vol. 2, pp. 229–274, (1986)
Rice, J.R.: Split Runge-Kutta methods for simultaneous equations. J. Res. Nat. Inst. Stand. Technol. 60(B) (1960)
Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comput. 20(2), 534–552 (1998). ISSN 1064-8275. doi:http://dx.doi.org/10.1137/S1064827596306562
Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)
Shu, C.-W.: A survey of strong stability preserving high order time discretizations. In: Estep, D., Tavener, T. (eds.) Collected Lectures on the Preservation of Stability Under Discretization, pp. 51–65. SIAM, Philadelphia (2002)
Shu, C.-W., Osher, S.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49(179), 105–121 (1987)
Shu, C.-W., Osher, S.: TVB boundary treatment for numerical solutions of conservation laws. Math. Comput. 49(179), 105–121 (1987)
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). ISSN 0021-9991
Vreugdenhil, C.B., Koren, B. (eds.): Numerical Methods for Advection–Diffusion Problems, Notes on Numerical Fluid Mechanics, vol. 45. Vieweg, Wiesbaden (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Science Foundation through award NSF CCF-0515170.
Rights and permissions
About this article
Cite this article
Sandu, A., Constantinescu, E.M. Multirate Explicit Adams Methods for Time Integration of Conservation Laws. J Sci Comput 38, 229–249 (2009). https://doi.org/10.1007/s10915-008-9235-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-008-9235-3