Abstract
In this paper, we improve the Navier–Stokes flow solver developed by Sun et al. based on the spectral volume method (SV) in the following two aspects: the development of a more efficient implicit/p-multigrid solution approach, and the use of a new viscous flux formula. An implicit preconditioned LU-SGS p-multigrid method developed for the spectral difference (SD) Euler solver by Liang is adopted here. In the original SV solver, the viscous flux was computed with a local discontinuous Galerkin (LDG) type approach. In this study, an interior penalty approach is developed and tested for both the Laplace and Navier–Stokes equations. In addition, the second method of Bassi and Rebay (also known as BR2 approach) is also implemented in the SV context, and also tested. Their convergence properties are studied with the implicit BLU-SGS approach. Fourier analysis revealed some interesting advantages for the penalty method over the LDG method. A convergence speedup of up to 2-3 orders is obtained with the implicit method. The convergence was further enhanced by employing a p-multigrid algorithm. Numerical simulations were performed using all the three viscous flux formulations and were compared with existing high order simulations (or in some cases, analytical solutions). The penalty and the BR2 approaches displayed higher accuracy than the LDG approach. In general, the numerical results are very promising and indicate that the approach has a great potential for 3D flow problems.
Similar content being viewed by others
References
Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1994). doi:10.1006/jcph.1994.1148
Aftosmis, M., Gaitonde, D., Tavares, T.S.: Behavior of linear reconstruction techniques on unstructured meshes. AIAA J. 33, 2038–2049 (1995). doi:10.2514/3.12945
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982). doi:10.1137/0719052
Barth, T.J., Frederickson, P.O.: High-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper No. 90-0013 (1990)
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier Stokes equations. J. Comput. Phys. 131, 267–279 (1997). doi:10.1006/jcph.1996.5572
Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2d Euler equations. J. Comput. Phys. 138, 251–285 (1997). doi:10.1006/jcph.1997.5454
Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In: Karniadakis, G.E., Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, pp. 197–208. Springer, Berlin (2000)
Bassi, F., Rebay, S.: Numerical solution of the Euler equations with a multiorder discontinuous Finite element method. In: Proceedings of the Second International Conference on Computational Fluid Dynamics, Sydney, Australia, 15–19 July 2002
Baumann, C.E.: An hp-adaptive discontinuous finite element method for computational fluid dynamics. Ph.D. dissertation, University of Texas at Austin, December 1997
Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000). doi:10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
Chen, R.F., Wang, Z.J.: Fast, block lower-upper symmetric Gauss Seidel scheme for arbitrary grids. AIAA J. 38(12), 2238–2245 (2000)
Chen, Q.Y.: Partitions of a simplex leading to accurate spectral (finite) volume reconstruction. SIAM J. Sci. Comput. 27(4), 1458–1470 (2006). doi:10.1137/030601387
Chen, Q.Y.: Partitions for spectral finite volume reconstruction in the tetrahedron. J. Sci. Comput. 29(3), 299–319 (2006). doi:10.1007/s10915-005-9009-0
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection diffusion system. SIAM J. Numer. Anal. 35, 2440–2463 (1998). doi:10.1137/S0036142997316712
Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001). doi:10.1023/A:1012873910884
Delanaye, M., Liu, Y.: Quadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA Paper No. 99-3259-CP (1999)
Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 207, 92–113 (2005). doi:10.1016/j.jcp.2005.01.005
Gottlieb, S.: On high-order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25(1/2), 105–128 (2005)
Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998). doi:10.1090/S0025-5718-98-00913-2
Haga, T., Ohnishi, N., Sawada, K., Masunaga, A.: Spectral volume computation of flowfield in aerospace application using Earth Simulator. AIAA Paper, 2006–2823
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231 (1987). doi:10.1016/0021-9991(87)90031-3
Helenbrook, B.T., Atkins, H.L.: Application of p-multigrid to discontinuous Galerkin formulations of the Poisson equation. AIAA J. 44, 566–575 (2006). doi:10.2514/1.15497
Jameson, A., Yoon, S.: Lower–upper implicit schemes with multiples grids for the Euler equations. AIAA J. 25(7), 929–935 (1987). doi:10.2514/3.9724
Liang, C., Kannan, R., Wang, Z.J.: A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured grids. Comput. Fluids 38(2), 254–265 (2009)
Liou, M.-S., Steffen, C.: A New Flux Splitting Scheme. J. Comput. Phys. 107, 23–39 (1993). doi:10.1006/jcph.1993.1122
Liu, Y., Vinokur, M., Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J. Comput. Phys. 212, 454–472 (2006). doi:10.1016/j.jcp.2005.06.024
Luo, H., Baum, J.D., Löhner, R.: A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids. J. Comput. Phys. 211, 767–783 (2006). doi:10.1016/j.jcp.2005.06.019
Maday, Y., Munoz, R.: Spectral element multigrid, Part 2: Theoretical justification. Tech. Rep. 88-73, ICASE (1988)
Mavriplis, D.J.: Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. J. Comput. Phys. 145, 141–165 (1998). doi:10.1006/jcph.1998.6036
Mavriplis, D.J., Jameson, A., Martinelli, L.: Multigrid solution of the Navier–Stokes equations on triangular meshes. AIAA Paper 89–0120 (1989)
Nastase, C.R., Mavriplis, D.J.: High-order discontinuous Galerkin methods using an hp-multigrid approach. J. Comput. Phys. 213, 330–357 (2006). doi:10.1016/j.jcp.2005.08.022
Radespiel, R., Swanson, R.C.: An investigation of cell-centered and cell vertex multigrid schemes for Navier–Stokes equations. AIAA Paper No. 89-0543 (1989)
Rasetarinera, P., Hussaini, M.Y.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172, 718–738 (2001). doi:10.1006/jcph.2001.6853
Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981). doi:10.1016/0021-9991(81)90128-5
Ronquist, E.M., Patera, A.T.: Spectral element multigrid. I. Formulation and numerical results. J. Sci. Comput. 2(4), 389–406 (1987). doi:10.1007/BF01061297
Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)
Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 865 (1986)
Sharov, D., Nakahashi, K.: Low speed preconditioning and LUSGS scheme for 3D viscous low computations on unstructured grids. AIAA Paper No. 98–0614, January 1998
Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)
Shu, C.-W.: Navier–Stokes equations on triangular meshes. AIAA J. (1988). doi:10.1137/0909073
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988). doi:10.1016/0021-9991(88)90177-5
Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability preserving time discretization methods
Sun, Y., Wang, Z.J.: Efficient implicit non-linear LU-SGS approach for compressible flow computation using high-order spectral difference method. Commun. Comput. Phys. (submitted)
Sun, Y., Wang, Z.J.: Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws on unstructured grid. Int. J. Numer. Methods Fluids 45(8), 819–838 (2004). doi:10.1002/fld.726
Sun, Y., Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006). doi:10.1016/j.jcp.2005.10.019
Van Den Abeele, K.V., Broeckhoven, T., Lacor, C.: Dispersion and dissipation properties of the 1d spectral volume method and application to a p-multigrid algorithm. J. Comput. Phys. (2007, in press)
Van Den Abeele, K.V., Lacor, C.: An accuracy and stability study of the 2D spectral volume method. J. Comput. Phys. 226(1), 1007–1026 (2007). doi:10.1016/j.jcp.2007.05.004
Van Leer, B.: Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361 (1974). doi:10.1016/0021-9991(74)90019-9
Van Leer, B.: Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101 (1979). doi:10.1016/0021-9991(79)90145-1
Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210 (2002). doi:10.1006/jcph.2002.7041
Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation. J. Comput. Phys. 179, 665 (2002). doi:10.1006/jcph.2002.7082
Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids III: extension to one-dimensional systems. J. Sci. Comput. 20, 137 (2004). doi:10.1023/A:1025896119548
Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations. J. Comput. Phys. 194, 716 (2004). doi:10.1016/j.jcp.2003.09.012
Wang, Z.J., Liu, Y.: Extension of the spectral volume method to high-order boundary representation. J. Comput. Phys. 211, 154–178 (2006). doi:10.1016/j.jcp.2005.05.022
Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003). doi:10.1142/S0218202503002568
Zhang, M., Shu, C.W.: An analysis and a comparison between the discontinuous Galerkin method and the spectral finite volume methods. Comput. Fluids 34(4–5), 581–592 (2005). doi:10.1016/j.compfluid.2003.05.006
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kannan, R., Wang, Z.J. A Study of Viscous Flux Formulations for a p-Multigrid Spectral Volume Navier Stokes Solver. J Sci Comput 41, 165 (2009). https://doi.org/10.1007/s10915-009-9269-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-009-9269-1