Abstract
Initial- and initial-boundary value problems for nonlinear one-dimensional parabolic partial differential equations are solved numerically by a probabilistic domain decomposition method. This is based on a probabilistic representation of solutions by means of branching stochastic processes. Only few values of the solution inside the space-time domain are generated by a Monte Carlo method, and an interpolation is then made so to approximate suitable interfacial values of the solution inside the domain. In this way, a fully decoupled set of sub-problems is obtained. This method allows for an efficient massively parallel implementation, is scalable and fault tolerant. Numerical examples, including some for the KPP equation and beyond are given to show the performance of the algorithm.
Similar content being viewed by others
References
Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic boundary-value problems. SIAM J. Sci. Comput. 27(2), 440–457 (2005)
Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Probabilistically induced domain decomposition methods for elliptic boundary-value problems. J. Comput. Phys. 210(2), 421–438 (2005)
Acebrón, J.A., Spigler, R.: Supercomputing applications to the numerical modeling of industrial and applied mathematics problems. J. Supercomput. 40, 67–80 (2007)
Acebrón, J.A., Spigler, R.: A fully scalable parallel algorithm for solving elliptic partial differential equations. In: Lect. Notes in Comput. Sci., vol. 4641, pp. 727–736. Springer, Berlin (2007)
Acebrón, J.A., Rodríguez-Rozas, A., Spigler, R.: Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees. J. Comput. Phys. 228(15), 5574–5591 (2009)
Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)
Brazhnik, P.K., Tyson, J.J.: On travelling wave solutions of Fishers equation in two spatial dimensions. SIAM J. Appl. Math. 60, 371–391 (1999)
Buchmann, F.M.: Simulation of stopped diffusions. J. Comput. Phys. 202, 446–462 (2005)
Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. Acta Numer. 61–143 (1994) [Cambridge University Press, Cambridge, 1994]
Chauvin, B., Rouault, A.: A stochastic simulation for solving scalar reaction-diffusion equations. Adv. Appl. Probab. 22, 88–100 (1990)
Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)
Dongarra, J., Fox, G., Kennedy, K., Torczon, L., Gropp, W., Foster, I., White, A.: The Sourcebook of Parallel Computing. Morgan Kaufmann, San Mateo (2002)
DuChateau, P., Zachmann, D.: Applied Partial Differential Equations. Dover, New York (2002)
Freidlin, M.: Functional Integration and Partial Differential Equations. Annals of Mathematics Studies, vol. 109. Princeton Univ. Press, Princeton (1985)
Floriani, E., Lima, R., Vilela Mendes, R.: Poisson-Vlasov: Stochastic representation and numerical codes. Eur. Phys. J. D 46, 295–302 (2008)
Jansons, K.M., Lythe, G.D.: Efficient numerical solution of stochastic differential equations using exponential timestepping. J. Stat. Phys. 100(5/6), 1097–1109 (2000)
Jansons, K.M., Lythe, G.D.: Exponential timestepping with boundary test for stochastic differential equations. SIAM J. Sci. Comput. 24, 1809–1822 (2003)
Kalos, M.H., Withlock, P.A.: Monte Carlo Methods, Vol. I: Basics. Wiley, New York (1986)
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)
Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)
Lapeyre, B., Pardoux, E., Sentis, R.: Introduction to Monte-Carlo Methods for Transport and Diffusion Equations. Oxford Univ. Press, London (2003)
Le Jan, Y., Sznitman, A.S.: Stochastic cascades and 3-dimensional Navier-Stokes equations. Probab. Theory Relat. Fields 109, 343–336 (1997)
McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1975)
Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)
Petersen, W., Arbenz, P.: Introduction to Parallel Computing. A Practical Guide with Examples in C. Oxford Univ. Press, London (2004)
Peirano, E., Talay, D.: Domain decomposition by stochastic methods. In: Herrera, I., Keyes, D.E., Widlund, O.B., Yates, R. (eds.) Domain Decomposition Methods in Science and Engineering, Proc. of the 14th Int. Conf. on Domain Decomposition Methods, Natl. Auton. Univ. Mex., Cocoyoc, México, 2002, pp. 131–147 (2003) (electronic)
Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications. Clarendon Press, Oxford (1999)
Ramirez, J.M.: Multiplicative cascades applied to PDEs (two numerical examples). J. Comput. Phys. 214, 122–136 (2006)
Regnier, H., Talay, D.: Vitesse de convergence d’une méthode particulaire stochastique avec branchements. C. R. Acad. Sci. Paris, Sér. I, Math. 332, 933–938 (2001)
Regnier, H., Talay, D.: Convergence rate of the Sherman and Peskin branching stochastic particle method. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460, 199–220 (2004)
Sherman, A.S., Peskin, C.S.: A Monte Carlo method for scalar reaction diffusion equations. SIAM J. Sci. Stat. Comput. 7, 1360–1372 (1986)
Sherman, A., Mascagni, M.: A gradient random walk method fr two-dimensional reaction-diffusion equations. SIAM J. Sci. Comput. 15, 1280–1293 (1994)
Talay, D.: Probabilistic numerical methods for partial differential equations: elements of analysis. In: Talay, D., Tubaro, L. (eds.) Probabilistic Models for Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol. 1627, pp. 48–196. Springer, Berlin (1996)
Waymire, E.: Probability and incompressible Navier-Stokes equations: An overview of some recent developments. Probab. Surv. 2, 1–32 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Acebrón, J.A., Rodríguez-Rozas, Á. & Spigler, R. Efficient Parallel Solution of Nonlinear Parabolic Partial Differential Equations by a Probabilistic Domain Decomposition. J Sci Comput 43, 135–157 (2010). https://doi.org/10.1007/s10915-010-9349-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-010-9349-2