Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel Two-Grid Semismooth Newton-Krylov-Schwarz Method for Nonlinear Complementarity Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop scalable parallel domain decomposition algorithms for nonlinear complementarity problems including, for example, obstacle problems and free boundary value problems. Semismooth Newton is a popular approach for such problems, however, the method is not suitable for large scale calculations because the number of Newton iterations is not scalable with respect to the grid size; i.e., when the grid is refined, the number of Newton iterations often increases drastically. In this paper, we introduce a family of Newton-Krylov-Schwarz methods based on a smoothed grid sequencing method, a semismooth inexact Newton method, and a two-grid restricted overlapping Schwarz preconditioner. We show numerically that such an approach is totally scalable in the sense that the number of Newton iterations and the number of linear iterations are both nearly independent of the grid size and the number of processors. In addition, the method is not sensitive to the sharp discontinuity often associated with obstacle problems. We present numerical results for several large scale calculations obtained on machines with hundreds of processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Argonne National Laboratory (2009)

  2. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11, 297–271 (1990)

    MathSciNet  Google Scholar 

  3. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optim. 4, 297–330 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, X.-C., Gropp, W.D., Keyes, D.E., Melvin, R.G., Young, D.P.: Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation. SIAM J. Sci. Comput. 19, 246–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, X.-C., Dryja, M., Sarkis, M.: Restricted additive Schwarz preconditioners with harmonic overlap for symmetric positive definite linear systems. SIAM J. Numer. Anal. 41, 1209–1231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  8. Cottle, R., Pang, J.-S., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  9. Luca, T.D., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)

    Article  MATH  Google Scholar 

  10. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  11. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 392–422 (1994)

    Article  MathSciNet  Google Scholar 

  12. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17, 16–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program. 76, 493–512 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Ferris, M.C., Kanzow, C.: Complementarity and related problems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 514–530. Oxford University Press, New York (2002)

    Google Scholar 

  15. Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Frommer, A., Szyld, D.B.: An algebraic convergence theory for restricted additive Schwarz methods using weighted max norms. SIAM J. Numer. Anal. 39, 463–479 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gabriel, S.A., Pang, J.-S.: An inexact NE/SQP method for solving the nonlinear complementarity problem. Comput. Optim. Appl. 1, 67–91 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hintermüller, M., Ito, K., Kunish, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  22. Jiang, H., Qi, L.: A new nonsmooth equations approach to nonlinear complementarity problems. SIAM J. Control Optim. 35, 178–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kanzow, C.: Inexact semismooth Newton methods for large-scale complementarity problems. Optim. Meth. Softw. 19, 309–325 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kärkkäinen, T., Kunisch, K., Tarvainen, P.: Augmented Lagrangian active set methods for obstacle problems. J. Optim. Theory Appl. 119, 499–533 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numer. Math. 69, 167–184 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Kornhuber, R.: On constrained Newton linearization and multigrid for variational inequalities. Numer. Math. 91, 699–721 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Morales, J.L., Nocedal, J., Smelyanskiy, M.: An algorithm for the fast solution of symmetric linear complementarity problems. Numer. Math. 111, 251–266 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nabben, R., Szyld, D.B.: Convergence theory of restricted multiplicative Schwarz methods. SIAM J. Numer. Anal. 40, 2318–2336 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95, 631–658 (2003)

    Article  MathSciNet  Google Scholar 

  30. Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Prudencio, E., Cai, X.-C.: Parallel multilevel restricted Schwarz preconditioners with pollution removing for PDE-constrained optimization. SIAM J. Sci. Comput. 29, 964–985 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  34. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  35. Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  36. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  37. Ulbrich, M.: Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Chuan Cai.

Additional information

The research was supported in part by DOE under DE-SC0001774 and FC-02-06ER25784, and in part by NSF under grant DMS 0913089.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Cai, XC. Parallel Two-Grid Semismooth Newton-Krylov-Schwarz Method for Nonlinear Complementarity Problems. J Sci Comput 47, 258–280 (2011). https://doi.org/10.1007/s10915-010-9436-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9436-4

Keywords