Abstract
In this paper, we consider 3D Bioluminescence tomography (BLT) source reconstruction from Poisson data in three dimensional space. With a priori information of sources sparsity and MAP estimation of Poisson distribution, we study the minimization of Kullback-Leihbler divergence with ℓ 1 and ℓ 0 regularization. We show numerically that although several ℓ 1 minimization algorithms are efficient for compressive sensing, they fail for BLT reconstruction due to the high coherence of the measurement matrix columns and high nonlinearity of Poisson fitting term. Instead, we propose a novel greedy algorithm for ℓ 0 regularization to reconstruct sparse solutions for BLT problem. Numerical experiments on synthetic data obtained by the finite element methods and Monte-Carlo methods show the accuracy and efficiency of the proposed method.
Similar content being viewed by others
References
Alexandrakis, G., Rannou, F.-R., Chatziioannou, A.-F.: Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys. Med. Biol. 50, 4225–4241 (2005)
Brune, C., Sawatzky, A., Burger, M.: Bregman-EM-TV methods with application to optical nanoscopy. In: Proc. SSVM 2009. LNCS, vol. 5567. Springer, Berlin (2009)
Candès, E.J.: Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, vol. 3(26), pp. 1433–1452 (2006)
Candès, E.J.: Decoding by linear programing. IEEE Trans. Inf. Theory 15(12), 4203–4215 (2004)
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(26), 1207–1223 (2005)
Cong, W., Wang, G., Kumar, D., Liu, Y., Jiang, M., Wang, L.V., Hoffman, E.A., McLennan, G., McCray, P.B., Zabner, J., Cong, A.: Practical reconstruction method for bioluminescence tomography. Opt. Express 13(18), 6756–6771 (2005)
Chan, R.H., Chen, K.: Multilevel algorithm for a Poisson noise removal model with total-variation regularization. Int. J. Comput. Math. 84(8), 1183–1198 (2007)
Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)
Davis, G., Mallat, S., Avellaneda, M.: Greedy adaptive approximation. Constr. Approx. 13, 57–98 (1997)
Dupont, F., Fadili, J.M., Starck, J.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process. 18(2), 310–321 (2009)
Figueiredo, M., Bioucas-Dias, J.: Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization. In: IEEE Workshop on Statistical Signal Processing, Cardiff, UK (2009)
Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process., to appear
Han, W., Cong, W., Wang, G.: Mathematical theory and numerical analysis of bioluminescence tomography. Inverse Probl. 22, 1659–1675 (2006)
Han, W., Cong, W., Wang, G.: Mathematical study and numerical simulation of multispectral bioluminescence tomography. Int. J. Biomed. Imaging 2006, 1–10 (2006)
Han, W., Wang, G.: Bioluminescence tomography: biomedical background, mathematical theory, and numerical approximation. J. Comput. Math. 26, 324–335 (2008)
Gao, H., Zhao, H.: Multilevel bioluminescence tomography based on radiative transfer equation. Part 1: l1 regularization. Opt. Express 18(3), 1854–1871 (2010)
Gao, H., Zhao, H.: Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data fidelity. Opt. Express 18(3), 2894–2912 (2010)
Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)
Gu, X., Zhang, Q., Larcom, L., Jiang, H.: Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express 12(17), 3996–4000 (2004)
Harmany, Z.T., Marcia, R.F., Willett, R.M.: This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms—theory and practice. arXiv:1005.4274v1
Jonsson, E., Huang, S.-C., Chan, T.-F.: Total-variation regularization in positron emission tomography. UCLA CAM Report (98-48) (1998)
Kuo, C., Coquoz, O., Troy, T.L., Xu, H., Rice, B.W.: Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J. Biomed. Opt. 12, 024007 (2007)
Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22(1), 93–97 (2004)
Lange, K., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8(2), 306–316 (1984)
Lingenfelter, D., Fessler, J., He, Z.: Sparsity regularization for image reconstruction with Poisson data. In: Proc. SPIE Computational Imaging VII, vol. 7246 (2009)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Lu, Y., Zhang, X., Douraghy, A., Stout, D., Tian, J., Chan, T.-F., Chatziioannou, A.-F.: Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt. Express 17(10), 8062–8080 (2009)
Lu, Y., Machado, H.B., Bao, Q., Stout, D., Herschman, H., Chatziioannou, A.F.: In Vivo mouse bioluminescence tomography with radionuclide-based imaging validation. Mol. Imaging Biol. 13(1), 53–58 (2010)
Lv, Y., Tian, J., Cong, W., Wang, G., Luo, J., Yang, W., Li, H.: A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt. Express 14(18), 8211–8223 (2006)
Needella, D., Tropp, J.A.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samplesstar. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)
Nowak, R.D., Kolaczyk, E.D.: A Bayesian multiscale framework for Poisson inverse problems. IEEE Trans. Inf. Theory 46(5), 1811–1825 (2000)
Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)
Raginsky, M., Willett, R.M., Harmany, Z.T., Marcia, R.F.: Compressed sensing performance bounds under Poisson noise. IEEE Trans. Signal Process. 58(8), 3990–4002 (2010)
Rao, S.S.: The Finite Element Method in Engineering. Butterworth-Heinemann, Boston (1999)
Resmerita, E., Engl, H.W., Iusem, A.N.: The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Probl. 24(5), 059801 (2008)
Schweiger, M., Arridge, S.R., Hiraoka, M., Delpy, D.T.: The finite element method for the propagation of light in scattering media: Boundary and source conditions. Med. Phys. 22, 1779–1792 (1995)
Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21, 193–199 (2010)
Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction in positron emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for Positron emission tomography. J. Am. Stat. Assoc. 80(389), 8–20 (1995)
Wang, G., Hoffman, E.A., McLennan, G., Wang, L.V., Suter, M., Meinel, J.F.: Development of the first bioluminescence CT scanner. Radiology 566, 229 (2003)
Wang, G., Li, Y., Jiang, M.: Uniqueness theorems in bioluminescence tomography. Med. Phys. 31(8), 2289–2299 (2004)
Wang, G., Shen, H., Durairaj, K., Qian, X., Cong, W.: The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data. Int. J. Biomed. Imaging 2006, 1–8 (2006)
Willett, R., Raginsky, M.: Performance bounds for compressed sensing with Poisson noise. In: Proc. of IEEE Int. Symp. on Inf. Theory (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article can be found at http://dx.doi.org/10.1007/s10915-011-9544-9.
Rights and permissions
About this article
Cite this article
Zhang, X., Lu, Y. & Chan, T. A Novel Sparsity Reconstruction Method from Poisson Data for 3D Bioluminescence Tomography. J Sci Comput 50, 519–535 (2012). https://doi.org/10.1007/s10915-011-9533-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-011-9533-z