Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Sparsity Reconstruction Method from Poisson Data for 3D Bioluminescence Tomography

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 28 September 2011

Abstract

In this paper, we consider 3D Bioluminescence tomography (BLT) source reconstruction from Poisson data in three dimensional space. With a priori information of sources sparsity and MAP estimation of Poisson distribution, we study the minimization of Kullback-Leihbler divergence with 1 and 0 regularization. We show numerically that although several 1 minimization algorithms are efficient for compressive sensing, they fail for BLT reconstruction due to the high coherence of the measurement matrix columns and high nonlinearity of Poisson fitting term. Instead, we propose a novel greedy algorithm for 0 regularization to reconstruct sparse solutions for BLT problem. Numerical experiments on synthetic data obtained by the finite element methods and Monte-Carlo methods show the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrakis, G., Rannou, F.-R., Chatziioannou, A.-F.: Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys. Med. Biol. 50, 4225–4241 (2005)

    Article  Google Scholar 

  2. Brune, C., Sawatzky, A., Burger, M.: Bregman-EM-TV methods with application to optical nanoscopy. In: Proc. SSVM 2009. LNCS, vol. 5567. Springer, Berlin (2009)

    Google Scholar 

  3. Candès, E.J.: Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, vol. 3(26), pp. 1433–1452 (2006)

    Google Scholar 

  4. Candès, E.J.: Decoding by linear programing. IEEE Trans. Inf. Theory 15(12), 4203–4215 (2004)

    Google Scholar 

  5. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(26), 1207–1223 (2005)

    Google Scholar 

  6. Cong, W., Wang, G., Kumar, D., Liu, Y., Jiang, M., Wang, L.V., Hoffman, E.A., McLennan, G., McCray, P.B., Zabner, J., Cong, A.: Practical reconstruction method for bioluminescence tomography. Opt. Express 13(18), 6756–6771 (2005)

    Article  Google Scholar 

  7. Chan, R.H., Chen, K.: Multilevel algorithm for a Poisson noise removal model with total-variation regularization. Int. J. Comput. Math. 84(8), 1183–1198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  MATH  Google Scholar 

  9. Davis, G., Mallat, S., Avellaneda, M.: Greedy adaptive approximation. Constr. Approx. 13, 57–98 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Dupont, F., Fadili, J.M., Starck, J.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process. 18(2), 310–321 (2009)

    Article  MathSciNet  Google Scholar 

  11. Figueiredo, M., Bioucas-Dias, J.: Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization. In: IEEE Workshop on Statistical Signal Processing, Cardiff, UK (2009)

    Google Scholar 

  12. Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process., to appear

  13. Han, W., Cong, W., Wang, G.: Mathematical theory and numerical analysis of bioluminescence tomography. Inverse Probl. 22, 1659–1675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, W., Cong, W., Wang, G.: Mathematical study and numerical simulation of multispectral bioluminescence tomography. Int. J. Biomed. Imaging 2006, 1–10 (2006)

    Google Scholar 

  15. Han, W., Wang, G.: Bioluminescence tomography: biomedical background, mathematical theory, and numerical approximation. J. Comput. Math. 26, 324–335 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Gao, H., Zhao, H.: Multilevel bioluminescence tomography based on radiative transfer equation. Part 1: l1 regularization. Opt. Express 18(3), 1854–1871 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gao, H., Zhao, H.: Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data fidelity. Opt. Express 18(3), 2894–2912 (2010)

    Article  MathSciNet  Google Scholar 

  18. Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)

    Article  Google Scholar 

  19. Gu, X., Zhang, Q., Larcom, L., Jiang, H.: Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express 12(17), 3996–4000 (2004)

    Article  Google Scholar 

  20. Harmany, Z.T., Marcia, R.F., Willett, R.M.: This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms—theory and practice. arXiv:1005.4274v1

  21. Jonsson, E., Huang, S.-C., Chan, T.-F.: Total-variation regularization in positron emission tomography. UCLA CAM Report (98-48) (1998)

  22. Kuo, C., Coquoz, O., Troy, T.L., Xu, H., Rice, B.W.: Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J. Biomed. Opt. 12, 024007 (2007)

    Article  Google Scholar 

  23. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22(1), 93–97 (2004)

    Article  Google Scholar 

  24. Lange, K., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8(2), 306–316 (1984)

    Google Scholar 

  25. Lingenfelter, D., Fessler, J., He, Z.: Sparsity regularization for image reconstruction with Poisson data. In: Proc. SPIE Computational Imaging VII, vol. 7246 (2009)

    Google Scholar 

  26. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, Y., Zhang, X., Douraghy, A., Stout, D., Tian, J., Chan, T.-F., Chatziioannou, A.-F.: Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt. Express 17(10), 8062–8080 (2009)

    Article  Google Scholar 

  28. Lu, Y., Machado, H.B., Bao, Q., Stout, D., Herschman, H., Chatziioannou, A.F.: In Vivo mouse bioluminescence tomography with radionuclide-based imaging validation. Mol. Imaging Biol. 13(1), 53–58 (2010)

    Article  Google Scholar 

  29. Lv, Y., Tian, J., Cong, W., Wang, G., Luo, J., Yang, W., Li, H.: A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt. Express 14(18), 8211–8223 (2006)

    Article  Google Scholar 

  30. Needella, D., Tropp, J.A.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samplesstar. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  31. Nowak, R.D., Kolaczyk, E.D.: A Bayesian multiscale framework for Poisson inverse problems. IEEE Trans. Inf. Theory 46(5), 1811–1825 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Raginsky, M., Willett, R.M., Harmany, Z.T., Marcia, R.F.: Compressed sensing performance bounds under Poisson noise. IEEE Trans. Signal Process. 58(8), 3990–4002 (2010)

    Article  MathSciNet  Google Scholar 

  34. Rao, S.S.: The Finite Element Method in Engineering. Butterworth-Heinemann, Boston (1999)

    Google Scholar 

  35. Resmerita, E., Engl, H.W., Iusem, A.N.: The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Probl. 24(5), 059801 (2008)

    Article  MathSciNet  Google Scholar 

  36. Schweiger, M., Arridge, S.R., Hiraoka, M., Delpy, D.T.: The finite element method for the propagation of light in scattering media: Boundary and source conditions. Med. Phys. 22, 1779–1792 (1995)

    Article  Google Scholar 

  37. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21, 193–199 (2010)

    Article  Google Scholar 

  38. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction in positron emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)

    Article  Google Scholar 

  39. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  40. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for Positron emission tomography. J. Am. Stat. Assoc. 80(389), 8–20 (1995)

    Article  MathSciNet  Google Scholar 

  41. Wang, G., Hoffman, E.A., McLennan, G., Wang, L.V., Suter, M., Meinel, J.F.: Development of the first bioluminescence CT scanner. Radiology 566, 229 (2003)

    Google Scholar 

  42. Wang, G., Li, Y., Jiang, M.: Uniqueness theorems in bioluminescence tomography. Med. Phys. 31(8), 2289–2299 (2004)

    Article  Google Scholar 

  43. Wang, G., Shen, H., Durairaj, K., Qian, X., Cong, W.: The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data. Int. J. Biomed. Imaging 2006, 1–8 (2006)

    Google Scholar 

  44. Willett, R., Raginsky, M.: Performance bounds for compressed sensing with Poisson noise. In: Proc. of IEEE Int. Symp. on Inf. Theory (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqun Zhang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10915-011-9544-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lu, Y. & Chan, T. A Novel Sparsity Reconstruction Method from Poisson Data for 3D Bioluminescence Tomography. J Sci Comput 50, 519–535 (2012). https://doi.org/10.1007/s10915-011-9533-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9533-z

Keywords