Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Parallel Domain Decomposition Method for 3D Unsteady Incompressible Flows at High Reynolds Number

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Numerical simulation of three-dimensional incompressible flows at high Reynolds number using the unsteady Navier–Stokes equations is challenging. In order to obtain accurate simulations, very fine meshes are necessary, and such simulations are increasingly important for modern engineering practices, such as understanding the flow behavior around high speed trains, which is the target application of this research. To avoid the time step size constraint imposed by the CFL number and the fine spacial mesh size, we investigate some fully implicit methods, and focus on how to solve the large nonlinear system of equations at each time step on large scale parallel computers. In most of the existing implicit Navier–Stokes solvers, segregated velocity and pressure treatment is employed. In this paper, we focus on the Newton–Krylov–Schwarz method for solving the monolithic nonlinear system arising from the fully coupled finite element discretization of the Navier–Stokes equations on unstructured meshes. In the subdomain, LU or point-block ILU is used as the local solver. We test the algorithm for some three-dimensional complex unsteady flows, including flows passing a high speed train, on a supercomputer with thousands of processors. Numerical experiments show that the algorithm has superlinear scalability with over three thousand processors for problems with tens of millions of unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alfonsi, G.: Reynolds-averaged Navier-Stokes equations for turbulence modeling. Appl. Mech. Rev. 62, 040802 (2009)

    Article  Google Scholar 

  2. Alfonsi, G.: On direct numerical simulation of turbulent flows. Appl. Mech. Rev. 64, 020802 (2011)

    Article  Google Scholar 

  3. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep., Argonne National Laboratory (2012)

  4. Bayraktar, E., Mierka, O., Turek, S.: Benchmark computations of 3D laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow. Int. J. Comput. Sci. Eng. 7, 253–266 (2012)

    Article  Google Scholar 

  5. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, X.-C., Gropp, W.D., Keyes, D.E., Melvin, R.G., Young, D.P.: Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation. SIAM J. Sci. Comput. 19, 246–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T.F., van der Vorst, H.A.: Approximate and incomplete factorizations. In: Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering IV. Centenary Conference, Keyes, D.E., Sameh, A., Venkatakrishnan, V. (eds.) Dordrecht. Kluwer, 167–202 (1997)

  9. Chen, J.H.: Petascale direct numerical simulation of turbulent combustion-fundamental insights towards predictive models. Proc. Combust. Inst. 33, 99–123 (1999)

    Article  Google Scholar 

  10. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17, 16–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Franca, L.P., Frey, S.L.: Stabilized finite element method: II. The incompressible Navier-Stokes equation. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Friedrich, R., Huttl, T.J., Manhart, M., Wagner, C.: Direct numerical simulation of incompressible turbulent flows. Comput. Fluids 30, 555–579 (2001)

    Article  MATH  Google Scholar 

  13. Guermond, J.-L., Oden, J.T., Prudhomme, S.: Mathematical perspectives on large eddy simulation models for turbulent flows. J. Math. Fluid Mech. 6, 194–248 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hwang, F.-N., Cai, X.-C.: A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations. J. Comput. Phys. 204, 666–691 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hwang, F.-N., Wu, C.-Y., Cai, X.-C.: Numerical simulation of three-dimensional blood flows using domain decomposition method on parallel computer. J. Chin. Soc. Mech. Eng. 31, 199–208 (2010)

    Google Scholar 

  16. John, V.: On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder. Int. J. Numer. Meth. Fluids 50, 845–862 (2006)

    Article  MATH  Google Scholar 

  17. Karypis, G.: METIS/ParMETIS webpage. University of Minnesota, http://glaros.dtc.umn.edu/gkhome/views/metis (2012)

  18. Mahesh, K., Costantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 215–240 (2004)

    Article  MATH  Google Scholar 

  19. Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539–578 (1998)

    Article  MathSciNet  Google Scholar 

  20. Murillo, M., Cai, X.-C.: A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Linear Algebra. Appl. 11, 261–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Owen, S.J., Shepherd, J.F.: CUBIT project webpage. http://cubit.sandia.gov/ (2012)

  22. Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aeosp. Sci. 35, 335–362 (1999)

    Article  Google Scholar 

  23. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra, D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin D., Biros, G.: Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures. In: Proceedings ACM/IEEE Supercomputing Conference, (2010)

  24. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    MATH  Google Scholar 

  25. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2000)

    Google Scholar 

  27. Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. Notes Numer. Fluid Mech. 52, 547–566 (1996)

    Article  Google Scholar 

  28. Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory. Springer, Berlin (2005)

    Google Scholar 

  29. Yokokawa, M., Itakura, K.I., Uno, A., Ishihara, T., Kaneda, Y.: 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator. In: Proceedings ACM/IEEE Supercomputing Conference, (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Chuan Cai.

Additional information

The research was supported in part by NSF of USA under grants DMS-0913089 and CCF-1216314, the Knowledge Innovation Program of the Chinese Academy of Sciences (China) under KJCX2-EW-L01, and the international cooperation project of Guangdong provience (China) under 2011B050400037.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Wu, Y., Yan, Z. et al. A Parallel Domain Decomposition Method for 3D Unsteady Incompressible Flows at High Reynolds Number. J Sci Comput 58, 275–289 (2014). https://doi.org/10.1007/s10915-013-9732-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9732-x

Keywords

Mathematics Subject Classification (2000)