Abstract
In this paper, we present a fully discrete scheme by discretizing the space with the local discontinuous Galerkin method and the time with the Crank–Nicholson scheme to simulate the multi-dimensional Schrödinger equation with wave operator. The scheme can preserve the energy conservation which is an important property of the nonlinear Schrödinger equation with wave operator. The energy conservation is also a crucial property for long time simulations which will be demonstrated in the numerical experiment. The optimal error estimates of the semi-discrete scheme can be obtained for the linear case. Some numerical experiments in multi-dimensional spaces are shown to demonstrate the accuracy and capability of this scheme.
Similar content being viewed by others
References
Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 20, 492–521 (2012)
Bao, W.Z., Dong, X.C., Xin, J.: Comparisons between sine-Gordon equation and perturbed nonlinear Schrödinger equations for modeling light bullets beyond critical collapse. Phys. D 239, 1120–1134 (2010)
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)
Bergé, L., Colin, T.: A singular perturbation problem for an envelope equation in plasma physics. Phys. D 84, 437–459 (1995)
Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)
Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finnite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)
Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)
Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for fourth-order time-dependent problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)
Fan, K., Cai, W., Ji, X.: A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions. J. Comput. Phys. 227, 2387–2410 (2008)
Guo, B.L., Liang, H.X.: On the problem of numerical calculation for a class of the system of nonlinear Schrödinger equations with wave operator. J. Numer. Methods Comput. Appl. 4, 176–182 (1983)
Hairer, E., Lubich, C., Wanner, G.: Numerical geometric integration. Unpublished Lecture Notes (1999)
Li, X., Zhang, L.M., Wang, S.S.: A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 219, 3187–3197 (2012)
Lu, T., Cai, W., Zhang, P.W.: Conservative local discontinuous Galerkin methods for time dependent Schrödinger equation. Int. J. Anal. Mod. 2, 75–84 (2005)
Lu, T., Cai, W.: A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schröinger–Poisson equations with discontinuous potentials. J. Comput. Appl. Math. 220, 588–614 (2008)
Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations. Math. Ann. 322, 603–621 (2002)
Reed, W.H., Hill, T.R.: Triangular mesh method for the neutron transport equation, Technical report LA-UR-73-479. Los Alamos Scientific Laboratory, Los Alamos, NM (1973)
Schoene, A.Y.: On the nonrelativistic limits of the Klein–Gordon and Dirac equations. J. Math. Anal. Appl. 71, 36–47 (1979)
Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 12B, 1287–1296 (1986)
Tsutumi, M.: Nonrelativistic approximation of nonlinear Klein–Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)
Wang, J.: Multisymplectic Fourier pseudospectral method for the nonlinear Schröinger equations with wave operator. J. Comput. Math. 25, 31–48 (2007)
Wang, S.S., Zhang, L.M., Fan, R.: Discrete-time orthogonal spline collocation methods for the nonlinear Schröinger equation with wave operator. J. Comput. Appl. Math. 235, 1993–2005 (2011)
Wang, T.C., Zhang, L.M.: Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 182, 1780–1794 (2006)
Xin, J.: Modeling light bullets with the two-dimensional sine-Gordon equation. Phys. D 135, 345–368 (2000)
Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7, 967–986 (2013)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)
Xu, Y., Shu, C.-W.: Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)
Zhang, F., Peréz-Ggarcía, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger equation system: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)
Zhang, L.M., Li, X.G.: A conservative finite difference scheme for a class of nonlinear Schröinger equation with wave operator. Acta Math. Sci. 22A, 258–263 (2002)
Zhang, L.M., Chang, Q.S.: A conservative numerical scheme for a class of nonlinear Schrödinger with wave operator. Appl. Math. Comput. 145, 603–612 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by NSFC Grant Nos. 11371342, 11031007, Fok Ying Tung Education Foundation No. 131003.
Rights and permissions
About this article
Cite this article
Guo, L., Xu, Y. Energy Conserving Local Discontinuous Galerkin Methods for the Nonlinear Schrödinger Equation with Wave Operator. J Sci Comput 65, 622–647 (2015). https://doi.org/10.1007/s10915-014-9977-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9977-z