Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tailored Finite Point Methods for Solving Singularly Perturbed Eigenvalue Problems with Higher Eigenvalues

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study tailored finite point methods (TFPM) for solving the singularly perturbed eigenvalue (SPE) problems. We first provide an asymptotic analysis for the eigenpairs and show that for some special potential functions when \(\varepsilon \) approaches to zero the square of eigenfunction converges to a Dirac delta function weakly, and the eigenvalue converges to the minimum value of the potential function. For computing the eigenfunction with higher eigenvalue we propose two variants of TFPM for one-dimensional SPE problems and a nonlinear least square TFPM for two-dimensional problems. The eigenfunction with higher eigenvalue can be easily computed on a related coarse mesh on numerical tests, and suggests that the proposed schemes are accurate and efficient for the SPE problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Gaitherburg (1964)

    MATH  Google Scholar 

  2. Atkins, P.W.: Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry (Volume 1). Oxford University Press, Oxford (1977)

    Google Scholar 

  3. Ávila, A., Jeanjean, L.: A result on singularly perturbed elliptic problems. Commun. Pure App. Anal. 4(2), 343–358 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Babuska, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42(3), 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Bao, W., Chai, M.-H.: A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems. Commun. Comput. Phys. 4, 135–160 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schröinger equation in the semiclassical regime. J. Comput. Phys. 175(2), 487–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Lim, F.Y., Zhang, Y.: Energy and chemical potential asymptotic for the ground state of Bose–Eistein condensates in the semiclassical regime. Bull. Inst. Math. Acad. Sin. N. Ser. 2(2), 495–532 (2007)

    MATH  Google Scholar 

  8. de Jager, E.M., Küpper, T.: The Schrödinger equation as a singular perturbation problem. In: Proceedings of the Royal Society of Edinburgh Section A Mathematics, vol. 82(1–2), pp. 1–11 (1978)

  9. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  10. Galusinski, C.: A singular perturbation problem in a system of nonlinear Schr\({\ddot{o}}\)dinger equation occurring in Langmuir turbulence. ESAIM Math. Model. Numer. Anal. 34(01), 109–215 (2000)

    Article  MATH  Google Scholar 

  11. Golub, G., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separete. SIAM J. Numer. Anal. 10(2), 413–432 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub, G., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Probl. 19, R1–R26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gould, S.H.: Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn. Dover Pub, Mineola (1995)

    MATH  Google Scholar 

  14. Han, H., Huang, Z., Kellogg, R.B.: A tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comp. 36, 243–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, H., Huang, Z.: A tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous medium. J. Comp. Math. 26, 728–739 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Han, H., Huang, Z.: Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions. J. Sci. Comput. 41, 200–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, H., Huang, Z.: Tailored finite point method for steady–state reaction–diffusion equations. Commun. Math. Sci. 8, 887–899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Han, H., Huang, Z.: Tailored finite point method based on exponential bases for convection diffusion–reaction equation. Math. Comput. 82, 213–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, H., Tamg, M., Ying, W.: Two uniform tailored finite point schemes for the two dimensional discrete ordinates transport equations with boundary and interface layers. Commun. Comput. Phys. 15, 797–826 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hsieh, P., Shih, Y., Yang, S.: A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun. Comput. Phys. 10, 161–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Z., Yang, X.: Tailored finite point method for first order wave equation. J. Sci. Comput. 49, 351–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, H., Shih, Y., Tsai, C.: Tailored finite point method for numerical solutions of singular perturbed eigenvalue problems. Adv. Appl. Math. Mech. 6, 376–402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Horn, R.A., Johnson, C.A.: Matriz Analysis. Cambridge University Press, New York (1985)

    Book  Google Scholar 

  24. Jin, S., Markowich, P., Sparber, C.: Mathematical and computational methods for semiclassical Schröinger equations. Acta Numerica 20, 121–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Markowich, P.A., Pietra, P., Pohl, C.: Numerical approximation of quadratic observables of Schröinger-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruhe, A., Wedin, P.: Algorithms for separable nonlinear least squares problems. SIAM Rev. 22(3), 318–337 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shih, Y., Kellogg, R.B., Chang, Y.: Characteristic tailored finite point method for convection-dominated convection–diffusion–reaction problems. J. Sci. Comput. 47, 198–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shih, Y., Kellogg, R.B., Tsai, P.: A tailored finite point method for convection–diffusion–reaction problems. J. Sci. Comput. 43, 239–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  30. Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65, 455–466 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their kind comments and valuable suggestions. Research by the first author is supported by the National Science Foundation of China (NSFC) under Grant numbers 11371218 and 91330203. Research by the second author is supported by the Ministry of Science and Technology of Taiwan under Grant MOST 103-2115-M005-004-MY2. Research by the third author is supported by NSFC under Grant numbers 11571196 and 60873252, and by a Grant from the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yintzer Shih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Shih, Y. & Yin, D. Tailored Finite Point Methods for Solving Singularly Perturbed Eigenvalue Problems with Higher Eigenvalues. J Sci Comput 73, 242–282 (2017). https://doi.org/10.1007/s10915-017-0411-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0411-1

Keywords