Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Laplace Transform Methods for Free-Boundary Problems of Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we develop a fast Laplace transform method for solving a class of free-boundary fractional diffusion equations arising in the American option pricing. Instead of using the time-stepping methods, we develop the Laplace transform methods for solving the free-boundary fractional diffusion equations. By approximating the free boundary, the Laplace transform is taken on a fixed space region to replace discretizing the temporal variable. The hyperbola contour integral method is exploited to restore the option values. Meanwhile, the coefficient matrix has theoretically proven to be sectorial. Therefore, the highly accurate approximation by the fast Laplace transform method is guaranteed. The numerical results confirm that the proposed method outperforms the full finite difference methods in regard to the accuracy and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahna, J., Kang, S., Kwonc, Y.: A Laplace transform finite difference method for the Black–Scholes equation. Math. Comput. Model. 51, 247–255 (2010)

    Article  MathSciNet  Google Scholar 

  2. Cai, N., Kou, S.G.: Option pricing under a mixed-exponential jump diffusion model. Manag. Sci. 57, 2067–2081 (2011)

    Article  Google Scholar 

  3. Cai, N., Kou, S.G.: Pricing Asian options under a hyper-exponential jump diffusion model. Oper. Res. 60, 64–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carr, P.: Randomization and the American put. Rev. Financ. Stud. 11, 597–626 (1998)

    Article  Google Scholar 

  5. Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Financ. 58, 597–626 (2003)

    Google Scholar 

  6. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  7. Chen, W., Xu, X., Zhu, S.P.: Analytically pricing European-style options under the modified Black–Scholes equation with a spatial-fractional derivative. Q. Appl. Math. 72, 597–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.F., Chadam, J.: A mathematical analysis of the optimal exercise boundary for American put options. SIAM J. Math. Anal. 38, 1613–1641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davydov, D., Linetsky, V.: Pricing and hedging path dependent options under the CEV process. Manag. Sci. 47, 949–965 (2001)

    Article  MATH  Google Scholar 

  10. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  11. in’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33, 763–785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kimura, T.: Valuing finite-lived Russian options. Eur. J. Oper. Res. 189, 363–374 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, H., Sheen, D.: Laplace transformation method for the Black–Scholes equation. Int. J. Numer. Anal. Model. 6, 642–658 (2009)

    MathSciNet  Google Scholar 

  14. Lee, H., Sheen, D.: Numerical approximation of option pricing model under jump diffusion using the Laplace transformation method. Int. J. Numer. Anal. Model. 8, 566–583 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leippold, M., Vasiljević, N.: Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model. http://ssrn.com/abstract=2571208 (2015)

  18. McLean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. McLean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transformation. IMA J. Numer. Anal. 24, 439–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. McLean, W., Thomée, V.: Numerical solution via Laplace transformation of a fractional order evolution equation. J. Integral Equ. Appl. 22, 57–94 (2010)

    Article  MATH  Google Scholar 

  21. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–diffusion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided spacefractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, H., Sun, H.: Fast numerical contour integral method for fractional diffusion equations. J. Sci. Comput. 66, 41–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pelsser, A.: Pricing double barrier options using Laplace transform. Financ. Stochast. 4, 95–104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic press, New York (1999)

    MATH  Google Scholar 

  27. Pun, C.S., Wong, H.Y.: CEV asymptotics of American options. J. Math. Anal. Appl. 403, 451–463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sepp, A.: Analytical pricing of double barrier options under a double-exponential jump diffusion process: applications of Laplace transform. Int. J. Theor. Appl. Financ. 7, 151–175 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stehfest, H.: Numerical inversion of Laplace transforms. Commun. ACM 13, 47–49 (1970)

    Article  Google Scholar 

  32. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23, 97C120 (1979)

    Article  MathSciNet  Google Scholar 

  33. Tilli, P.: Singular values and eigenvalues of non-Hermitian block Toeplitz matrices. Linear Algebra Appl. 272, 59–89 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weideman, J.A.C.: Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal. 30, 334–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wong, H.Y., Zhao, J.: Valuing American options under the CEV model by Laplace–Carson trnsforms. Oper. Res. Lett. 38, 474–481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, M., Knessl, C.: On a free boundary problem for an American put option under the CEV process. Appl. Math. Lett. 24, 1191–1198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, S.P.: A new analytical approximation formula for the optimal exercise boundary of the American put options. Int. J. Theor. Appl. Financ. 7, 1141–1177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtang Ma.

Ethics declarations

Conflict of interest

None.

Additional information

The work was supported by National Natural Science Foundation of China (Grant No. 11671323), Program for New Century Excellent Talents in University (Grant No. NCET-12-0922) and the Fundamental Research Funds for the Central Universities (Grant No. 15CX141110). It was also partially supported by Research Grants MYRG2016-00063-FST from University of Macau and 054/2015/A2 from FDCT of Macao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Ma, J. & Sun, Hw. Fast Laplace Transform Methods for Free-Boundary Problems of Fractional Diffusion Equations. J Sci Comput 74, 49–69 (2018). https://doi.org/10.1007/s10915-017-0423-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0423-x

Keywords

Mathematics Subject Classification