Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Morley-Type Virtual Element for Plate Bending Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a simple nonconforming virtual element for plate bending problems, which has few local degrees of freedom and provides the optimal convergence in \(H^2\)-norm. Moreover, we prove the optimal error estimates in \(H^1\)- and \(L^2\)-norm. The nonconforming virtual element is constructed for any order of accuracy, but not \(C^0\)-continuous. It is worth mentioning that, for the lowest-order case on triangular meshes the simplified nonconforming virtual element coincides with the well-known Morley element, so it can be taken as the extension of the Morley element to polygonal meshes. Finally, we verify the optimal convergence in \(H^2\)-norm for the nonconforming virtual element by some numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., da Veiga, L.B., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54, 34–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. arXiv:1611.08736 (2016)

  4. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 3, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Guan, Q., Sung, L.-Y.: Some estimates for virtual element methods. Comput. Methods Appl. Math. https://doi.org/10.1515/cmam-2017-0008 (2017)

  7. Brenner, S.C., Scott, L.R.: Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  8. Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise \(H^2\) functions. Numer. Funct. Anal. Optim. 25, 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chinosi, C., Marini, L.D.: Virtual element method for fourth order problems: \(L^2\)-estimates. Comput. Math. Appl. 72, 1959–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Grisvard, P.: Singularities in Boundary Value Problems, vol. 22. Springer, Berlin (1992)

    MATH  Google Scholar 

  13. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numér. 9, 9–53 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Mao, S., Nicaise, S., Shi, Z.-C.: Error estimates of Morley triangular element satisfying the maximal angle condition. Int. J. Numer. Anal. Model. 7, 639–655 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968)

    Google Scholar 

  16. Shi, Z.C.: On the error estimates of Morley element. Math. Numer. Sin. 12, 113–118 (1990). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  17. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26, 1671–1687 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Jiming Wu, Zhiming Gao and Shuai Su from Institute of Applied Physics and Computational Mathematics, Beijing, China, for the provision of the polygonal mesh data and specially for the encouragement to carry on with this work. We also thank Donatella Marini and Claudia Chinosi from Italy, for the guidance to compute the errors of VEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikun Zhao.

Additional information

This work is supported by National Natural Science Foundation of China (11701522, 11371331), National Key Research and Development Program of China (2016YFB0201304) and National Magnetic Confinement Fusion Science Program of China (2015GB110003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, B., Chen, S. et al. The Morley-Type Virtual Element for Plate Bending Problems. J Sci Comput 76, 610–629 (2018). https://doi.org/10.1007/s10915-017-0632-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0632-3

Keywords

Mathematics Subject Classification