Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) are key ingredients in a number of models in physics and financial engineering. In particular, parabolic PDEs and BSDEs are fundamental tools in pricing and hedging models for financial derivatives. The PDEs and BSDEs appearing in such applications are often high-dimensional and nonlinear. Since explicit solutions of such PDEs and BSDEs are typically not available, it is a very active topic of research to solve such PDEs and BSDEs approximately. In the recent article (E et al., Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, arXiv:1607.03295) we proposed a family of approximation methods based on Picard approximations and multilevel Monte Carlo methods and showed under suitable regularity assumptions on the exact solution of a semilinear heat equation that the computational complexity is bounded by \(O( d \, {\varepsilon }^{-(4+\delta )})\) for any \(\delta \in (0,\infty )\) where d is the dimensionality of the problem and \({\varepsilon }\in (0,\infty )\) is the prescribed accuracy. In this paper, we test the applicability of this algorithm on a variety of 100-dimensional nonlinear PDEs that arise in physics and finance by means of numerical simulations presenting approximation accuracy against runtime. The simulation results for many of these 100-dimensional example PDEs are very satisfactory in terms of both accuracy and speed. Moreover, we also provide a review of other approximation methods for nonlinear PDEs and BSDEs from the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amadori, A.L.: Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differ. Integral Equ. 16(7), 787–811 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Avellaneda, M., Levy, A., Parás, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2(2), 73–88 (1995)

    Article  Google Scholar 

  3. Bally, V., Pagès, G.: Error analysis of the optimal quantization algorithm for obstacle problems. Stoch. Process. Appl. 106(1), 1–40 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bally, V., Pagès, G.: A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli 9(6), 1003–1049 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayraktar, E., Milevsky, M.A., Promislow, S.D., Young, V.R.: Valuation of mortality risk via the instantaneous Sharpe ratio: applications to life annuities. J. Econ. Dyn. Control 33(3), 676–691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayraktar, E., Young, V.: Pricing options in incomplete equity markets via the instantaneous Sharpe ratio. Ann. Finance 4(4), 399–429 (2008)

    Article  MATH  Google Scholar 

  7. Bender, C., Denk, R.: A forward scheme for backward SDEs. Stoch. Process. Appl. 117(12), 1793–1812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bender, C., Schweizer, N., Zhuo, J.: A primal-dual algorithm for BSDEs. Math. Finance 27, 866–901 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergman, Y.Z.: Option pricing with differential interest rates. Rev. Financ. Stud. 8(2), 475–500 (1995)

    Article  Google Scholar 

  10. Bouchard, B., Touzi, N.: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111(2), 175–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Briand, P., Delyon, B., Mémin, J.: Donsker-type theorem for BSDEs. Electron. Commum. Probab. 6, 1–14 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Briand, P., Labart, C.: Simulation of BSDEs by Wiener chaos expansion. Ann. Appl. Probab. 24(3), 1129–1171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burgard, C., Kjaer, M.: Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs. J. Credit Risk 7(3), 1–19 (2011)

    Article  Google Scholar 

  14. Chang, D., Liu, H., Xiong, J.: A branching particle system approximation for a class of FBSDEs. Probab. Uncertain. Quantit. Risk 1(1), 9 (2016)

    Article  MathSciNet  Google Scholar 

  15. Chassagneux, J.-F.: Linear multistep schemes for BSDEs. SIAM J. Numer. Anal. 52(6), 2815–2836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chassagneux, J.-F., Crisan, D.: Runge–Kutta schemes for backward stochastic differential equations. Ann. Appl. Probab. 24(2), 679–720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheridito, P., Soner, H.M., Touzi, N., Victoir, N.: Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crépey, S., Gerboud, R., Grbac, Z., Ngor, N.: Counterparty risk and funding: the four wings of the TVA. Int. J. Theor. Appl. Finance 16(02), 1350006 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Creutzig, J., Dereich, S., Müller-Gronbach, T., Ritter, K.: Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math. 9(4), 391–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crisan, D., Lyons, T.: Minimal entropy approximations and optimal algorithms for the filtering problem. Monte Carlo Methods Appl. 8(4), 343–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crisan, D., Manolarakis, K.: Probabilistic methods for semilinear partial differential equations. Applications to finance. ESAIM Math. Model. Numer. Anal. 44(05), 1107–1133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crisan, D., Manolarakis, K.: Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing. SIAM J. Financ. Math. 3(1), 534–571 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crisan, D., Manolarakis, K.: Second order discretization of backward SDEs and simulation with the cubature method. Ann. Appl. Probab. 24(2), 652–678 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Crisan, D., Manolarakis, K., Touzi, N.: On the Monte Carlo simulation of BSDEs: an improvement on the Malliavin weights. Stoch. Process. Appl. 120(7), 1133–1158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Da Prato, G., Zabczyk, J.: Differentiability of the Feynman–Kac semigroup and a control application. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8(3), 183–188 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Delarue, F., Menozzi, S.: A forward-backward stochastic algorithm for quasi-linear PDEs. Ann. Appl. Probab. 16, 140–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. arXiv:1607.03295 (2016)

  28. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Elworthy, K., Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125(1), 252–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Escobedo, M., Herrero, M.A.: Boundedness and blow up for a semilinear reaction–diffusion system. J. Differ. Equ. 89(1), 176–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fahim, A., Touzi, N., Warin, X.: A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab. 21, 1322–1364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Forsyth, P.A., Vetzal, K.R.: Implicit solution of uncertain volatility/transaction cost option pricing models with discretely observed barriers. Appl. Numer. Math. 36(4), 427–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_{t}=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I 13, 109–124 (1966)

    MathSciNet  MATH  Google Scholar 

  34. Geiss, C., Geiss, S., Gobet, E.: Generalized fractional smoothness and \(l^p\)-variation of BSDEs with non-Lipschitz terminal condition. Stoch. Process. Appl. 122(5), 2078–2116 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Geiss, C., Geiss, S.: On approximation of a class of stochastic integrals and interpolation. Stoch. Stoch. Rep. 76(4), 339–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Geiss, C., Labart, C.: Simulation of BSDEs with jumps by Wiener Chaos expansion. Stoch. Process. Appl. 126(7), 2123–2162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Giles, M.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 343–358. Springer, Berlin (2008)

    Chapter  MATH  Google Scholar 

  38. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gobet, E., Labart, C.: Solving BSDE with adaptive control variate. SIAM J. Numer. Anal. 48(1), 257–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gobet, E., Lemor, J.-P.: Numerical simulation of BSDEs using empirical regression methods: theory and practice. arXiv:0806.4447 (2008)

  41. Gobet, E., Lemor, J.-P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gobet, E., Makhlouf, A.: \(l_2\)-time regularity of BSDEs with irregular terminal functions. Stoch. Process. Appl. 120(7), 1105–1132 (2010)

    Article  MATH  Google Scholar 

  43. Gobet, E., Turkedjiev, P.: Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression. Bernoulli 22(1), 530–562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gobet, E., Turkedjiev, P.: Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Math. Comput. 85(299), 1359–1391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Graham, C., Talay, D.: Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation, vol. 68 of Stochastic Modelling and Applied Probability. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  46. Guo, W., Zhang, J., Zhuo, J.: A monotone scheme for high-dimensional fully nonlinear PDEs. Ann. Appl. Probab. 25(3), 1540–1580 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Guyon, J., Henry-Labordère, P.: The uncertain volatility model: a Monte Carlo approach. J. Comput. Finance 14(3), 385–402 (2011)

    Article  Google Scholar 

  48. Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, Berlin (2006)

    MATH  Google Scholar 

  49. Heinrich, S.: Monte Carlo complexity of global solution of integral equations. J. Complex. 14(2), 151–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Waśniewski, J., Yalamov, P. (eds.) Large-Scale Scientific Computing, pp. 58–67. Springer, Berlin (2001)

    Chapter  Google Scholar 

  51. Heinrich, S.: The randomized information complexity of elliptic PDE. J. Complex. 22(2), 220–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Heinrich, S., Sindambiwe, E.: Monte Carlo complexity of parametric integration. J. Complex. 15(3), 317–341 (1999). (Dagstuhl Seminar on Algorithms and Complexity for Continuous Problems (1998))

    Article  MathSciNet  MATH  Google Scholar 

  53. Henry-Labordère, P.: Counterparty risk valuation: a marked branching diffusion approach. arXiv:1203.2369 (2012)

  54. Henry-Labordere, P., Oudjane, N., Tan, X., Touzi, N., Warin, X.: Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. arXiv:1603.01727 (2016)

  55. Henry-Labordère, P., Tan, X., Touzi, N.: A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl. 124(2), 1112–1140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. arXiv:1401.0295 (2014)

  57. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467, 1563–1576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab. 23(5), 1913–1966 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, vol. 23 of Applications of Mathematics (New York). Springer, Berlin (1992)

    Book  Google Scholar 

  61. Laurent, J.-P., Amzelek, P., Bonnaud, J.: An overview of the valuation of collateralized derivative contracts. Rev. Deriv. Res. 17(3), 261–286 (2014)

    Article  MATH  Google Scholar 

  62. Le Cavil, A., Oudjane, N., Russo, F.: Forward Feynman–Kac type representation for semilinear nonconservative partial differential equations. arXiv:1608.04871 (2016)

  63. Leland, H.: Option pricing and replication with transaction costs. J. Finance 40(5), 1283–1301 (1985)

    Article  Google Scholar 

  64. Lemor, J.-P., Gobet, E., Warin, X.: Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12(5), 889–916 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lionnet, A., Dos Reis, G., Szpruch, L.: Time discretization of FBSDE with polynomial growth drivers and reaction-diffusion PDEs. Ann. Appl. Probab. 25(5), 2563–2625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Litterer, C., Lyons, T.: High order recombination and an application to cubature on Wiener space. Ann. Appl. Probab. 22, 1301–1327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. López-Mimbela, J.A., Wakolbinger, A.: Length of Galton–Watson trees and blow-up of semilinear systems. J. Appl. Probab. 35(4), 802–811 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Lyons, T., Victoir, N.: Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 169–198 (2004). (Stochastic analysis with applications to mathematical finance (2004))

    Article  MathSciNet  MATH  Google Scholar 

  69. Ma, J., Protter, P., San Martin, J., Torres, S.: Numberical method for backward stochastic differential equations. Ann. Appl. Probab. 12(1), 302–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ma, J., Zhang, J.: Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12(4), 1390–1418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  71. Maruyama, G.: Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo (2) 4, 48–90 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  72. Nagasawa, M., Sirao, T.: Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation. Trans. Am. Math. Soc. 139, 301–310 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  73. Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Rozovskii, B.L., Sowers, R.B. (eds.) Stochastic Partial Differential Equations and Their Applications, pp. 200–217. Springer, Berlin (1992)

    Chapter  MATH  Google Scholar 

  74. Pardoux, É., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  75. Peng, S.G.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1–2), 61–74 (1991)

    MathSciNet  MATH  Google Scholar 

  76. Petersdorff, T.V., Schwab, C.: Numerical solution of parabolic equations in high dimensions. ESAIM: Math. Modell. Numer. Anal. Modélisation Mathématique et Analyse Numérique 38(1), 93–127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  77. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Vol. 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  78. Ruijter, M.J., Oosterlee, C.W.: A Fourier cosine method for an efficient computation of solutions to BSDEs. SIAM J. Sci. Comput. 37(2), A859–A889 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. Ruijter, M.J., Oosterlee, C.W.: Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance. Appl. Numer. Math. 103, 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  80. Skorohod, A.V.: Branching diffusion processes. Teor. Verojatnost. i Primenen. 9, 492–497 (1964)

    MathSciNet  Google Scholar 

  81. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963)

    MathSciNet  MATH  Google Scholar 

  82. Tadmor, E.: A review of numerical methods for nonlinear partial differential equations. Bull. Am. Math. Soc. (N.S.) 49(4), 507–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  83. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Vol. 25 of Springer Series in Computational Mathematics. Springer, Berlin (1997)

    Book  Google Scholar 

  84. Turkedjiev, P.: Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions. Electron. J. Probab. (2015). https://doi.org/10.1214/EJP.v20-3022

    Article  MathSciNet  MATH  Google Scholar 

  85. Windcliff, H., Wang, J., Forsyth, P., Vetzal, K.: Hedging with a correlated asset: solution of a nonlinear pricing PDE. J. Comput. Appl. Math. 200(1), 86–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. Zhang, J.: A numerical scheme for BSDEs. Ann. Appl. Probab. 14(1), 459–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project has been partially supported through the research Grants ONR N00014-13-1-0338 and DOE DE-SC0009248 and through the German Research Foundation via RTG 2131 High-dimensional Phenomena in Probability—Fluctuations and Discontinuity and via research Grant HU 1889/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf Jentzen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we provide the Matlab codes needed to approximate the solutions of the example PDEs from Sect. 3. Throughout this section assume the setting in Sect. 2.3.

Matlab code 1 below produces one realization of

$$\begin{aligned}&\{ 1, 2, \dots , 7 \}\times \{ 1, 2, \dots ,5 \} \ni (\rho ,i) \mapsto \mathbf{U}^i_{ \rho , \rho }(0, x_0 )\nonumber \\&=(\mathbf{U}^{i,[1]}_{ \rho , \rho }( 0,x_0 ),\mathbf{U}^{i,[2]}_{ \rho , \rho }( 0,x_0 ),\ldots ,\mathbf{U}^{i,[d+1]}_{ \rho , \rho }(0, x_0 ))\in {\mathbb {R}}^{d+1}. \end{aligned}$$
(34)

For the numerical results in Sects. 3.1, 3.2, for every \(d\in \{1,100\}\) we run Matlab code 1 twice where, in the second run, line 2 of Matlab code 1 is replaced by rng(2017) to initiate the pseudorandom number generator with a different seed. This way we obtain in total 10 independent simulation runs. Moreover, for the numerical results in Sects. 3.3, we run Matlab code 1 once, where lines 4, 5, and 14 are replaced by average=10;, rhomax=5;, and [a,b]=approximateUZabm(n(rho),rho,zeros(dim,1),0);, respectively.

figure a

Matlab code 1 calls the Matlab functions approximateUZgbm (respectively approximateUZabm), modelparameters, and approxparameters. The Matlab functions approximateUZgbm and approximateUZabm are presented in Matlab codes 2 and 3 and implement the schemes (12) and (11), respectively. More precisely, up to rounding errors and the fact that random numbers are replaced by pseudo random numbers, it holds for all \(\theta \in \Theta \), \(n\in {\mathbb {N}}_0\), \(\rho \in {\mathbb {N}}\), \(x\in {\mathbb {R}}^d\), \(s\in [0,T)\) that \(\texttt {approximateUZgbm}(n,\rho ,x,s)\) returns one realization of \(\mathbf{U}^\theta _{ n, \rho }(s, x)\) satisfying (12). Moreover, up to rounding errors and the fact that random numbers are replaced by pseudo random numbers, it holds for all \(\theta \in \Theta \), \(n\in {\mathbb {N}}_0\), \(\rho \in {\mathbb {N}}\), \(x\in {\mathbb {R}}^d\), \(s\in [0,T)\) that \(\texttt {approximateUZabm}(n,\rho ,x,s)\) returns one realization of \(\mathbf{U}^\theta _{ n, \rho }(s, x)\) satisfying (11).

figure b

The Matlab function modelparameters called in line 7 of Matlab code 1 returns the parameters \(T\in (0,\infty )\), \(d\in {\mathbb {N}}\), \(f:[0,T]\times {\mathbb {R}}^d \times {\mathbb {R}}\times {\mathbb {R}}^{d} \rightarrow {\mathbb {R}}\), \(g:{\mathbb {R}}^d \rightarrow {\mathbb {R}}\), \(\eta :{\mathbb {R}}^d \rightarrow {\mathbb {R}}\), \({{\bar{\mu }}}\in {\mathbb {R}}\), and \({{\bar{\sigma }}} \in {\mathbb {R}}\) for each example considered in Sects. 3.13.3. Matlab code 4 presents the implementation for the setting in Sect. 3.1 in the case \(d=100\) and \(T=2\).

figure c

The Matlab function approxparameters called in line 8 of Matlab code 1 provides for every example considered in Sects. 3.1, 3.2 (respectively Sect. 3.3) and every \(\rho \in \{1,2,\ldots , 7\}\) (respectively \(\rho \in \{1,2,\ldots , 5\}\)) the numbers of Monte-Carlo samples \((m^g_{k,l,\rho })_{k,l \in {\mathbb {N}}_0}\) and \((m^f_{k,l,\rho })_{k,l \in {\mathbb {N}}_0}\) and the quadrature formulas \((q^{k,l,\rho }_s)_{k,l \in {\mathbb {N}}_0, s\in [0,T)}\). More precisely, we assume for every \( s \in [0,T], k,l \in {\mathbb {N}}_0, \rho \in {\mathbb {N}}\) with \(k\ge l\) that \( q^{ k, l, \rho }_s \) is the Gauss–Legendre quadrature formula on (sT) with \({\text {round}}(\varphi (\rho ^{(k-l)/2}))\) nodes, where \(\varphi :[1,\infty ) \rightarrow [2,\infty )\) is the approximation of the inverse gamma function provided by Matlab code 6. To compute the Gauss–Legendre nodes and weights we use the Matlab function lgwt that was written by Greg von Winckel and that can be downloaded from www.mathworks.com. In addition, for every \( k,l \in {\mathbb {N}}_0, \rho \in {\mathbb {N}}\) we choose in Sects. 3.1, 3.2 that \( m^f_{ k, l, \rho } = {\text {round}}(\rho ^{(k-l)/2}) \) and \( m^g_{ k, l, \rho } = \rho ^{k-l} \) and in Sect. 3.3 that \( m^f_{ k,l, \rho } = \rho ^{k-l} \) and \( m^g_{ k, l, \rho } = \rho ^{k-l} \). For the numerical results in Sects. 3.1, 3.2Matlab code 5 presents the implementation of approxparameters. For the numerical results in Sect. 3.3 line 10 in Matlab code 5 is replaced by \(\texttt {Mf(rho,k)=rho}^{\wedge }{} \texttt {k;}\). The reason for choosing in Sects. 3.1, 3.2 fewer Monte-Carlo samples \((m^f_{k,l,\rho })_{k,l \in {\mathbb {N}}_0, \rho \in {\mathbb {N}}}\) than in Sect. 3.3 is that in the former cases for every \(s \in [0,T)\) the variance \( {{\text {Var}}}(f(s,X^{0,x_0}_s, {\mathbb {E}}[g(X^{s,x}_T)(1,\frac{W_T-W_s}{T-s})]\big |_{x=X^{0,x_0}_s}))\) of the nonlinearity is of smaller magnitude than the variance \({{\text {Var}}}(g(X^{0,x_0}_T))\) of the terminal condition. Therefore, the nonlinearity requires fewer Monte-Carlo samples to obtain a Monte-Carlo error of the same magnitude as the terminal condition. Averaging the nonlinearity less saves computational effort and allows to employ a higher maximal number of Picard iterations (7 in Sects. 3.1, 3.2 compared to 5 in Sect. 3.3).

figure d

Solutions of one-dimensional PDEs can be efficiently approximated by finite difference approximation schemes. Matlab code 7 implements such an approximation scheme in the setting of Proposition 2.2 and Matlab code 8 implements such an approximation scheme in the setting of Proposition 2.1.

figure e

The command ploterrorvsruntime(v,value,time) (the matrices value and time are produced in Matlab code 1 and the value v by Matlab code 7 or 8) plots the error (17) against the runtime (cf. the left-hand side of Figs. 13).

figure f

The command plotincrementsvsruntime(value,time) (the matrices value and time are produced in Matlab code 1) plots the increments (18) against the runtime (cf. the right-hand side of Figs. 13).

figure g
Fig. 5
figure 5

Left: Runtime needed to compute one realization of \(\mathbf{U}^1_{6,6}(0,x_0)\) against dimension \(d\in \{5,6,\ldots ,100\}\) for the pricing with counterparty credit risk example in Sect. 3.1. Middle: Runtime needed to compute one realization of \(\mathbf{U}^1_{6,6}(0,x_0)\) against dimension \(d\in \{5,6,\ldots ,100\}\) for the pricing with different interest rates example in Sect. 3.2. Right: Average runtime needed to compute 20 realizations of \(\mathbf{U}^1_{4,4}(0,x_0)\) against dimension \(d\in \{5,6,\ldots ,100\}\) for the Allen–Cahn equation in Sect. 3.3

The three graphs of Fig. 5 are produced with the help of Matlab codes 11 and 12. More precisely, up to rounding errors and the fact that random numbers are replaced by pseudo random numbers, Matlab code 11 generates for every \(d\in \{5,6,\ldots ,100\}\) one realization of \(\mathbf{U}^0_{ 6, 6 }(0, x_0)\) with \(x_0= (100,\ldots ,100)\in {\mathbb {R}}^d\) and records the associated runtimes. Matlab code 11 calls Matlab code 12 to plot the three graphs in Fig. 5 where, for the right-hand side of Fig. 5, lines 4 and 11 in Matlab code 11 are replaced by average=20; and rhomax=4;, respectively.

figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, W., Hutzenthaler, M., Jentzen, A. et al. On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations. J Sci Comput 79, 1534–1571 (2019). https://doi.org/10.1007/s10915-018-00903-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-00903-0

Keywords

Mathematics Subject Classification