Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Linear Barycentric Rational Quadrature Method for Auto-Convolution Volterra Integral Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with the numerical solution of auto-convolution Volterra integral equations. A composite quadrature method based on linear barycentric rational interpolation is introduced. The method is easy to be implemented because only a linear equation needs to be solved in each time step. Collocation method is used as the starting procedure. The boundedness and convergence of the numerical solution are studied in detail. Some numerical experiments are carried out to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baker, C.T.H.: The Numerical Treatment of Integral Equations. Monographs on Numerical Analysis. Clarendon Press, Oxford (1977)

    Google Scholar 

  2. Battles, Z., Trefethen, L.N.: An extension of matlab to continuous functions and operators. SIAM J. Sci. Comput. 25(5), 1743–1770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellen, A., Jackiewicz, Z., Vermiglio, R., Zennaro, M.: Stability analysis of Runge–Kutta methods for Volterra integral equations of the second kind. IMA J. Numer. Anal. 10(1), 103–118 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berrut, J.P., Hosseini, S., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36(1), A105–A123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Brunner, H., Hairer, E., Nørsett, S.: Runge–Kutta theory for Volterra integral equations of the second kind. Math. Comput. 39(159), 147–163 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations. CWI Monographs, vol. 3. North-Holland Publishing Co., Amsterdam (1986)

    Google Scholar 

  9. Brunner, H., Yan, N.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. J. Comput. Appl. Math. 67(1), 185–189 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Zhang, C.: Block boundary value methods for solving Volterra integral and integro-differential equations. J. Comput. Appl. Math. 236(11), 2822–2837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79(269), 147–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107(2), 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guan, Q., Zhang, R., Zou, Y.: Analysis of collocation solutions for nonstandard Volterra integral equations. IMA J. Numer. Anal. 32(4), 1755–1785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hosseini, S.A., Abdi, A.: On the numerical stability of the linear barycentric rational quadrature method for Volterra integral equations. Appl. Numer. Math. 100, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, Q.: Superconvergence of numerical solutions to Volterra integral equations with singularities. SIAM J. Numer. Anal. 34(5), 1698–1707 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, C.: Stability of linear multistep methods for delay integro-differential equations. Comput. Math. Appl. 55(12), 2830–2838 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, C., Vandewalle, S.: Stability of Runge–Kutta–Pouzet methods for Volterra integro-differential equations with delays. Front. Math. China 4(1), 63–87 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, H., Brunner, H.: On the convergence of collocation solutions in continuous piecewise polynomial spaces for Volterra integral equations. BIT 56(4), 1339–1367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)

    Book  MATH  Google Scholar 

  20. Lubich, C.: On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal. 3(4), 439–465 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lubich, C.: Runge–Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41(163), 87–102 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, J., Xiang, S.: A collocation boundary value method for linear Volterra integral equations. J. Sci. Comput. 71(1), 1–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ming, W., Huang, C.: Collocation methods for Volterra functional integral equations with non-vanishing delays. Appl. Math. Comput. 296, 198–214 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Pouzet, P.: étude en vue de leur traitement numérique des équations intégrales de type Volterra. Rev. Franç. Trait. Inf. Chiffres 6, 79–112 (1963)

    MathSciNet  MATH  Google Scholar 

  25. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  26. Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61(3), 373–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Trefethen, L.N., et al.: Chebfun version 4.2, the Chebfun development team (2011)

  29. Wang, Z., Yang, Z., Zhao, C.: Theoretical and numerical analysis for third-kind auto-convolution Volterra integral equations. Commun. Nonlinear Sci. Numer. Simul. (under review)

  30. Xie, H., Zhang, R., Brunner, H.: Collocation methods for general Volterra functional integral equations with vanishing delays. SIAM J. Sci. Comput. 33(6), 3303–3332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral galerkin methods for Volterra type integral equations. J. Sci. Comput. 53(2), 414–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, R., Liang, H., Brunner, H.: Analysis of collocation methods for generalized auto-convolution Volterra integral equations. SIAM J. Numer. Anal. 54(2), 899–920 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, J., Cao, Y., Xu, Y.: Legendre spectral collocation methods for Volterra delay-integro-differential equations. J. Sci. Comput. 67(3), 1110–1133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zhanwen Yang for his helpful suggestions for the Proof of Theorem 2. They are also grateful to the anonymous referees and the editors whose comments improved the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Additional information

This work was supported by National Natural Science Foundation of China (No. 11771163).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, C. The Linear Barycentric Rational Quadrature Method for Auto-Convolution Volterra Integral Equations. J Sci Comput 78, 549–564 (2019). https://doi.org/10.1007/s10915-018-0779-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0779-6

Keywords