Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Gradient Flow Structure of an Extended Maxwell Viscoelastic Model and a Structure-Preserving Finite Element Scheme

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An extended Maxwell viscoelastic model with a relaxation parameter is studied from mathematical and numerical points of view. It is shown that the model has a gradient flow property with respect to a viscoelastic energy. Based on the gradient flow structure, a structure-preserving time-discrete model is proposed and existence of a unique solution is proved. Moreover, a structure-preserving P1/P0 finite element scheme is presented and its stability in the sense of energy is shown by using its discrete gradient flow structure. As typical viscoelastic phenomena, two-dimensional numerical examples by the proposed scheme for a creep deformation and a stress relaxation are shown and the effects of the relaxation parameter are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abuzeid, O.M., Eberhard, P.: Linear viscoelastic creep model for the contact of nominal flat surfaces based on fractal geometry: standard linear solid (SLS) material. J. Tribol. 129, 461–466 (2007)

    Article  Google Scholar 

  2. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  3. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1970)

    Google Scholar 

  4. Golden, J.M., Graham, G.A.C.: Boundary Value Problems in Linear Viscoelasticity. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  5. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Karamanou, M., Shaw, S., Warby, M.K., Whiteman, J.R.: Models, algorithms and error estimation for computational viscoelasticity. Comput. Methods Appl. Mech. Eng. 194(2–5), 245–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kimura, M., Notsu, H., Tanaka, Y., Yamamoto, H.: In preparation

  8. Lockett, F.J.: Nonlinear Viscoelastic Solids. Academic Press, Paris (1972)

    MATH  Google Scholar 

  9. Macosko, C.W.: Rheology: Principles, Measurements, and Applications. Wiley-VCH, New York (1994)

    Google Scholar 

  10. Nečas, J.: Les Méthods Directes en Théories des Équations Elliptiques. Masson, Paris (1967)

    MATH  Google Scholar 

  11. Rivière, B., Shaw, S.: Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers. SIAM J. Numer. Anal. 44(6), 2650–2670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rivière, B., Shaw, S., Wheeler, M.F., Whiteman, J.R.: Discontinuous galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numerische Mathematik 95(2), 347–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rognes, M.E., Winther, R.: Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. 20, 955–985 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Shaw, S., Whiteman, J.R.: A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems. Comput. Methods Appl. Mech. Eng. 193(52), 5551–5572 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers JP16H02155, JP17H02857, JP26800091, JP16K13779, JP18H01135, and JP17K05609, JSPS A3 Foresight Program, and JST PRESTO Grant Number JPMJPR16EA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Notsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, M., Notsu, H., Tanaka, Y. et al. The Gradient Flow Structure of an Extended Maxwell Viscoelastic Model and a Structure-Preserving Finite Element Scheme. J Sci Comput 78, 1111–1131 (2019). https://doi.org/10.1007/s10915-018-0799-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0799-2

Keywords