Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a globally divergence conforming discontinuous Galerkin (DG) method on Cartesian meshes for curl-type hyperbolic conservation laws based on directly evolving the face and cell moments of the Raviart–Thomas approximation polynomials. The face moments are evolved using a 1-D discontinuous Gakerkin method that uses 1-D and multi-dimensional Riemann solvers while the cell moments are evolved using a standard 2-D DG scheme that uses 1-D Riemann solvers. The scheme can be implemented in a local manner without the need to solve a global mass matrix which makes it a truly DG method and hence useful for explicit time stepping schemes for hyperbolic problems. The scheme is also shown to exactly preserve the divergence of the vector field at the discrete level. Numerical results using second and third order schemes for induction equation are presented to demonstrate the stability, accuracy and divergence preservation property of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174, 614–648 (2001)

    Article  MATH  Google Scholar 

  3. Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149 (2004)

    Article  Google Scholar 

  4. Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5056 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balsara, D.S.: A two-dimensional HLLC riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balsara, D.S., Amano, T., Garain, S., Kim, J.: A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional riemann solver for electromagnetism. J. Comput. Phys. 318, 169–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional riemann solvers. J. Comput. Phys. 299, 687–715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balsara, D.S., Dumbser, M.: Multidimensional riemann problem with self-similar internal structure. Part II—application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Balsara, D.S., Garain, S., Taflove, A., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution—part-II, higher order FVTD schemes. Submitted (2017)

  12. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional riemann solvers. J. Comput. Phys. 336, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Balsara, D.S., Nkonga, B.: Multidimensional riemann problem with self-similar internal structure—part iii—a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution–part i, second-order FVTD schemes. J. Comput. Phys. 349, 604–635 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Besse, N., Kröner, D.: Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system. ESAIM: M2AN 39, 1177–1202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brackbill, J., Barnes, D.: The effect of nonzero div(B) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  19. Cai, W., Hu, J., Zhang, S.: High order hierarchical divergence-free constrained transport H(div) finite element method for magnetic induction equation. Numer. Math. Theor. Methods Appl. 10, 243–254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cai, W., Wu, J., Xin, J.: Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible mhd on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988)

    Article  Google Scholar 

  25. Fu, P., Li, F., Xu, Y.: Globally divergence-free discontinuous Galerkin methods for ideal magnetohydrodynamic equations. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0750-6

  26. Fuchs, F.G., Karlsen, K.H., Mishra, S., Risebro, N.H.: Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43, 825–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot b=0\) exactly for mhd models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49, 375–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher-order finite difference schemes for the magnetic induction equations with resistivity. IMA J. Numer. Anal. 32, 1173–1193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22–23, 413–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nedelec, J.C.: Mixed finite elements in \(r^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Powell, K.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report 94-24, ICASE, NASA Langley (1994)

  36. Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Publishing Company, Incorporated, 1st ed. 1994. 2nd printing ed. (2008)

  37. Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2-nd Order Elliptic Problems, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  38. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toth, G.: The div(B)=0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, H., Li, F.: Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations. ESAIM: M2AN 50, 965–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support received from the Airbus Chair on Mathematics of Complex Systems established at TIFR-CAM by the Airbus Foundation for carrying out this work. The author also thanks Dinshaw S. Balsara for many discussions which were helpful in formulating these ideas. Finally, the author would like to thank the anonymous reviewer whose comments helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Chandrashekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekar, P. A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint. J Sci Comput 79, 79–102 (2019). https://doi.org/10.1007/s10915-018-0841-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0841-4

Keywords