Abstract
In this paper we study the supercloseness property of the linear discontinuous Galerkin (DG) finite element method and its superconvergence behavior after post-processing by the polynomial preserving recovery (PPR). The error estimate with explicit dependence on the wave number k, the penalty parameter \(\mu \) and the mesh condition parameter \(\alpha \) is derived. We prove the supercloseness between the DG finite element solution and the linear interpolation and the superconvergence for the recovered gradient by the PPR under the assumption \(k(kh)^2\le C_0\) (h is the mesh size) and certain mesh conditions. Furthermore, we estimate the error between the DG numerical gradient and recovered gradient, which motivates us to define the a posteriori error estimator and design a Richardson extrapolation to post-process the recovered gradient by PPR. Finally, some numerical examples are provided to confirm the theoretical results of superconvergence analysis.
Similar content being viewed by others
References
Ainsworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)
Aziz, A.K., Kellogg, R.B.: A scattering problem for the Helmholtz equation. Adv. Comput. Methods Partial Diff. Equ.-III 1, 93–95 (1979)
Babuška, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42(3), 451–484 (2000)
Babuška, I., Ihlenburg, F., Paik, E.T., Sauter, S.A.: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128, 325–359 (1995)
Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part I: grid with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)
Blum, H., Rannacher, R.: Asymptotic error expansion and richardson extrapolation for linear finite elements. Numer. Math. 49, 11–38 (1986)
Bramble, J .H., Xu, J.: Some estimates for a weighted L\(^2\) projection. Math. Comput. 56(194), 463–476 (1991)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)
Burman, E., Wu, H., Zhu, L.: Continuous interior penalty finite element method for Helmholtz equation with high wave number: one dimensional analysis. arXiv:1211.1424
Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51, 2331–2356 (2013)
Chen, L., Xu, J.: Topics on Adaptive Finite Element Methods. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and Algorithms. Science Press, Beijing (2007)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Pub. Co., New York (1978)
COMSOL AB.: Comsol Multiphysics User’s Guide, 3.5a ed. (2008)
Deraemaeker, A., Babuška, I., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Internat. J. Numer. Methods Eng. 46, 471–499 (1999)
Douglas Jr., J., Santos, J.E., Sheen, D.: Approximation of scalar waves in the space–frequency domain. Math. Models Methods Appl. Sci. 4, 509–531 (1994)
Du, Y., Wu, H., Zhang, Z.: Superconvergence analysis of linear FEM based on the polynomial preserving recovery and Richardson extrapolation for Helmholtz equation with high wave number. arXiv:1703.00156 (2017)
Du, Y., Wu, H.: Preasymptotic error analysis of higher order fem and cip-fem for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53(2), 782–804 (2015)
Du, Y., Zhu, L.: Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number. J. Sci. Comput. 67, 130–152 (2015)
Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32(3), 313–357 (1979)
Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)
Feng, X., Wu, H.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80(276), 1997–2024 (2011)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 69. SIAM (2011)
Harari, I.: Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Eng. 140(1), 39–58 (1997)
Helfrich, P.: Asymptotic expansion for the finite element approximations of parabolic problems. Bonner Math. Schriften 158, 11–30 (1983)
Huang, Y., Jinchao, X.: Superconvergence of quadratic finite elements on mildly structured grids. Math. Comput. 77(263), 1253–1268 (2008)
Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)
Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The \(h\)-\(p\) version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)
Lakhany, A.M., Marek, I., Whiteman, J.R.: Superconvergence results on mildly structured triangulations. Comput. Methods Appl. Mech. Eng. 189, 1–75 (2000)
Lin, Q., Zhang, S., Yan, N.: Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations. J. Comput. Math. 16, 57–62 (1998)
Marchuk, G., Shaidurov, V.: Difference Methods and Their Extrapolation. Springer, New York (1983)
Melenk, J.M., Sauter, S.A.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79(272), 1871–1914 (2010)
Melenk, J.M., Sauter, S.A.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)
Melenk, J.M., Parsania, A., Sauter, S.: General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57, 536–581 (2013)
Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42, 1780–1800 (2004)
Rivière, B.: Discontinous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)
Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)
Wang, J.: Asymptotic expansions and \(l^\infty \)-error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55, 401–430 (1989)
Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes? SIAM J. Numer. Anal. 45, 1701–1722 (2007)
Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2003)
Yan, N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190, 4289–4299 (2001)
Zhang, Z.: Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals. Int. J. Numer. Anal. Model. 1, 1–24 (2004)
Zhang, Z.: Polynomial preserving recovery for anisotropic and irregular grids. J. Comput. Math. 22, 331–340 (2004)
Zhang, Z., Li, B.: Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Methods Partial Diff. Equ. 15, 151–167 (1999)
Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)
Zhang, T., Yu, S.: The derivative patch interpolation recovery technique and superconvergence for the discontinuous Galerkin method. Appl. Numer. Math. 85, 128–141 (2014)
Zhu, L., Du, Y.: Pre-asymptotic error analysis of \(hp\)-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number. Comput. Math. Appl. 70, 917–933 (2015)
Zhu, L., Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: \(hp\) version. SIAM J. Numer. Anal. 51(3), 1828–1852 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research of this work was supported in part by the following Grants: NSFC 11471031, 91430216, and 11601026; NASF U1530401; NSF DMS–1419040; a Tianhe–2JK computing time award at CSRC.
Rights and permissions
About this article
Cite this article
Du, Y., Zhang, Z. Supercloseness of Linear DG-FEM and Its Superconvergence Based on the Polynomial Preserving Recovery for Helmholtz Equation. J Sci Comput 79, 1713–1736 (2019). https://doi.org/10.1007/s10915-019-00906-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00906-5