Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Supercloseness of Linear DG-FEM and Its Superconvergence Based on the Polynomial Preserving Recovery for Helmholtz Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study the supercloseness property of the linear discontinuous Galerkin (DG) finite element method and its superconvergence behavior after post-processing by the polynomial preserving recovery (PPR). The error estimate with explicit dependence on the wave number k, the penalty parameter \(\mu \) and the mesh condition parameter \(\alpha \) is derived. We prove the supercloseness between the DG finite element solution and the linear interpolation and the superconvergence for the recovered gradient by the PPR under the assumption \(k(kh)^2\le C_0\) (h is the mesh size) and certain mesh conditions. Furthermore, we estimate the error between the DG numerical gradient and recovered gradient, which motivates us to define the a posteriori error estimator and design a Richardson extrapolation to post-process the recovered gradient by PPR. Finally, some numerical examples are provided to confirm the theoretical results of superconvergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ainsworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz, A.K., Kellogg, R.B.: A scattering problem for the Helmholtz equation. Adv. Comput. Methods Partial Diff. Equ.-III 1, 93–95 (1979)

    MathSciNet  Google Scholar 

  3. Babuška, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42(3), 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Ihlenburg, F., Paik, E.T., Sauter, S.A.: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128, 325–359 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part I: grid with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blum, H., Rannacher, R.: Asymptotic error expansion and richardson extrapolation for linear finite elements. Numer. Math. 49, 11–38 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble, J .H., Xu, J.: Some estimates for a weighted L\(^2\) projection. Math. Comput. 56(194), 463–476 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  9. Burman, E., Wu, H., Zhu, L.: Continuous interior penalty finite element method for Helmholtz equation with high wave number: one dimensional analysis. arXiv:1211.1424

  10. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51, 2331–2356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, L., Xu, J.: Topics on Adaptive Finite Element Methods. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and Algorithms. Science Press, Beijing (2007)

    Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Pub. Co., New York (1978)

    MATH  Google Scholar 

  13. COMSOL AB.: Comsol Multiphysics User’s Guide, 3.5a ed. (2008)

  14. Deraemaeker, A., Babuška, I., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Internat. J. Numer. Methods Eng. 46, 471–499 (1999)

    Article  MATH  Google Scholar 

  15. Douglas Jr., J., Santos, J.E., Sheen, D.: Approximation of scalar waves in the space–frequency domain. Math. Models Methods Appl. Sci. 4, 509–531 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Y., Wu, H., Zhang, Z.: Superconvergence analysis of linear FEM based on the polynomial preserving recovery and Richardson extrapolation for Helmholtz equation with high wave number. arXiv:1703.00156 (2017)

  17. Du, Y., Wu, H.: Preasymptotic error analysis of higher order fem and cip-fem for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53(2), 782–804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Y., Zhu, L.: Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number. J. Sci. Comput. 67, 130–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32(3), 313–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, X., Wu, H.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80(276), 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 69. SIAM (2011)

  23. Harari, I.: Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Eng. 140(1), 39–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helfrich, P.: Asymptotic expansion for the finite element approximations of parabolic problems. Bonner Math. Schriften 158, 11–30 (1983)

    MathSciNet  Google Scholar 

  25. Huang, Y., Jinchao, X.: Superconvergence of quadratic finite elements on mildly structured grids. Math. Comput. 77(263), 1253–1268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The \(h\)-\(p\) version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lakhany, A.M., Marek, I., Whiteman, J.R.: Superconvergence results on mildly structured triangulations. Comput. Methods Appl. Mech. Eng. 189, 1–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, Q., Zhang, S., Yan, N.: Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations. J. Comput. Math. 16, 57–62 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Marchuk, G., Shaidurov, V.: Difference Methods and Their Extrapolation. Springer, New York (1983)

    Book  MATH  Google Scholar 

  31. Melenk, J.M., Sauter, S.A.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79(272), 1871–1914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Melenk, J.M., Sauter, S.A.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Melenk, J.M., Parsania, A., Sauter, S.: General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57, 536–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42, 1780–1800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rivière, B.: Discontinous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  36. Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, J.: Asymptotic expansions and \(l^\infty \)-error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55, 401–430 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes? SIAM J. Numer. Anal. 45, 1701–1722 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yan, N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190, 4289–4299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Z.: Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals. Int. J. Numer. Anal. Model. 1, 1–24 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, Z.: Polynomial preserving recovery for anisotropic and irregular grids. J. Comput. Math. 22, 331–340 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, Z., Li, B.: Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Methods Partial Diff. Equ. 15, 151–167 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, T., Yu, S.: The derivative patch interpolation recovery technique and superconvergence for the discontinuous Galerkin method. Appl. Numer. Math. 85, 128–141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, L., Du, Y.: Pre-asymptotic error analysis of \(hp\)-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number. Comput. Math. Appl. 70, 917–933 (2015)

    Article  MathSciNet  Google Scholar 

  47. Zhu, L., Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: \(hp\) version. SIAM J. Numer. Anal. 51(3), 1828–1852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of this work was supported in part by the following Grants: NSFC 11471031, 91430216, and 11601026; NASF U1530401; NSF DMS–1419040; a Tianhe–2JK computing time award at CSRC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Zhang, Z. Supercloseness of Linear DG-FEM and Its Superconvergence Based on the Polynomial Preserving Recovery for Helmholtz Equation. J Sci Comput 79, 1713–1736 (2019). https://doi.org/10.1007/s10915-019-00906-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00906-5

Keywords