Abstract
This paper is devoted to virtual element methods for solving elliptic variational inequalities (EVIs) of the second kind. First, a general framework is provided for the numerical solution of the EVIs and for its error analysis. Then virtual element methods are applied to solve two representative EVIs: a simplified friction problem and a frictional contact problem. Optimal order error estimates are derived for the virtual element solutions of the two representative EVIs, including the effects of numerical integration for the non-smooth term in the EVIs. A fast solver is introduced to solve the discrete problems. Several numerical examples are included to show the numerical performance of the proposed methods.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)
Antonietti, P.F., Beirão Da Veiga, L., Mora, D., Verani, M.: A stream function formulation of the Stokes problem for the virtual element method. SIAM J. Numer. Anal. 52, 386–404 (2014)
Artioli, E., Beirão Da Veiga, L., Lovadina, C., et al.: Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput. Mech. 60(3), 355–377 (2017)
Artioli, E., Beirão Da Veiga, L., Lovadina, C., Sacco, E.: Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Comput. Mech. 60, 643–657 (2017)
Badea, L., Krause, R.: One- and two-level Schwarz methods for variational inequalities of the second kind and their application to frictional contact. Numer. Math. 120(4), 573–599 (2012)
Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. Wiley, Chichester (1984)
Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., et al.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 1–16 (2013)
Beirão Da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J Numer. Anal. 51(2), 794–812 (2013)
Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)
Beirão Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)
Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)
Bostan, V., Han, W.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195(9–12), 1252–1274 (2006)
Brenner, S.C., Guan, Q., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)
Brezzi, F., Hager, W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities I. Primal Theory. Numer. Math. 28, 431–443 (1977)
Brezzi, F., Hager, W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities II. Mixed methods. Numer. Math. 31, 1–16 (1978)
Bürg, M., Schröder, A.: A posteriori error control of hp-finite elements for variational inequalities of the first and second kind. Comput. Math. Appl. 70, 2783–2802 (2015)
Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)
Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (33 pp) (2013)
Cheng, X., Han, W.: Inexact Uzawa algorithms for variational inequalities of the second kind. Comput. Methods Appl. Mech. Eng. 192(11–12), 1451–1462 (2003)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28(128), 963–971 (1974)
Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
Glowinski, R., Lions, J.L., Tremolieres, I.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)
Han, W., Jensen, S., Reddy, B.D.: Numerical approximations of internal variable problems in plasticity: error analysis and solution algorithm. Numer. Linear Algebra Appl. 4(3), 191–204 (1997)
Han, W., Reddy, B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 32(6), 1778–1807 (1995)
Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society and International Press, London (2002)
Han, W., Wang, L.: Nonconforming finite element analysis for a plate contact problem. SIAM J. Numer. Anal. 40(5), 1683–1697 (2002)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction. Elsevier, Amsterdam (1981)
Sutton, O.J.: The virtual element method in 50 lines of MATLAB. Numer. Algorithms. 75, 1–19 (2016)
Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–320 (2012)
Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48(2), 708–733 (2010)
Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry055
Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85, 125–131 (2018)
Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. J. Sci. Comput. 76, 364–389 (2018)
Zhang, T., Tang, L.: Finite volume method for the variational inequalities of first and second kinds. Math. Methods Appl. Sci. 38(17), 3980–3989 (2016)
Acknowledgements
The authors are grateful to the referees for their valuable suggestions and comments which improved an early version of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of W. Han was partially supported by NSF under the Grant DMS-1521684.
The work of J. Huang was partially supported by NSFC (Grant No. 11571237).
Rights and permissions
About this article
Cite this article
Feng, F., Han, W. & Huang, J. Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind. J Sci Comput 80, 60–80 (2019). https://doi.org/10.1007/s10915-019-00929-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00929-y