Abstract
In this paper, we investigate a mortar element method for the time dependent coupling of incompressible flow and porous media flow which are governed by non-stationary Stokes and Darcy equations, respectively. The interface conditions are given by mass conservation, the balance of the normal forces and the Beavers–Joseph–Saffman law. We consider the dual-mixed formulation in Darcy region where velocity and pressure are both unknowns. We employ the lowest order Raviart–Thomas element for Darcy flow and choose Bernardi–Raugel element in the free fluid region. The backward Euler scheme is adopt to yield the fully discrete algorithm. At each single time step, we present a priori error estimate which shows the linear convergence. At the final, numerical experiments are provided to illustrate the performance of the developed algorithm that verify our analysis.





Similar content being viewed by others
References
Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971)
Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)
Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)
Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)
Discacciati, M., Quarteroni, A., Valli, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)
Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)
Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)
Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)
Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)
Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)
Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011)
He, X., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier–Stokes–Darcy model with Beavers–Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)
Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)
Bernardi, C., Hecht, F., Pironneau, O.: Coupling Darcy and Stokes equations for porous media with cracks. Math. Model. Numer. Anal. 39, 7–35 (2005)
Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)
Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198, 2692–2699 (2009)
Ervin, V., Jenkins, E., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)
Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)
Huang, P., Chen, J., Cai, M.: A mixed and nonconforming FEM with nonmatching meshes for a coupled Stokes–Darcy model. J. Sci. Comput. 53, 377–394 (2012)
Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)
Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys. 257, 126–142 (2014)
Gatica, G., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)
Babuška, I., Gatica, G.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48, 498–523 (2010)
Gatica, G., Oyarzúa, R., Sayas, F.: Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comp. 80, 1911–1948 (2011)
Discacciati, M., Oyarzúa, R.: A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numer. Math. 135, 571–606 (2017)
Cesmelioglu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)
Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comp. 79, 707–731 (2010)
Cesmelioglu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navier–Stokes/Darcy-transport problem. J. Differ. Equ. 252, 4138–4175 (2012)
Cesmelioglu, A., Girault, V., Rivière, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. Math. Model. Numer. Anal. 47, 539–554 (2013)
Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)
Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comp. 83, 1617–1644 (2014)
Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 134, 857–879 (2016)
Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods Appl. Mech. Eng. 315, 169–189 (2017)
Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar. XI vol. 13–51 (1994)
Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)
Bernardi, C., Rebollo, T., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42, 375–410 (2008)
Ervin, V., Jenkins, E., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)
Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite elment methods for Stokes–Darcy flows. Numer. Math. 127, 93–165 (2014)
Huang, P., Chen, J., Cai, M.: A mortar method using nonconforming and mixed finite elements for the coupled Stokes–Darcy model. Adv. Appl. Math. Mech. 9, 596–620 (2017)
Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)
Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972)
Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)
Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1984)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
Raviart, P., Thomas, J.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics. Springer, New York, pp. 292–315 (1977)
Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comp. 44, 71–79 (1985)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by National Natural Science Foundation of China (No. 11671157), National Natural Science Foundation of China Key Project (No. 91430213) and Hunan Provincial Innovation Foundation for Postgraduate (No. CX2016B251, CX2017B266).
Rights and permissions
About this article
Cite this article
Chen, Y., Zhao, X. & Huang, Y. Mortar Element Method for the Time Dependent Coupling of Stokes and Darcy Flows. J Sci Comput 80, 1310–1329 (2019). https://doi.org/10.1007/s10915-019-00977-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00977-4