Abstract
In this paper we investigate the numerical approximation of the fractional diffusion, advection, reaction equation on a bounded interval. Recently the explicit form of the solution to this equation was obtained. Using the explicit form of the boundary behavior of the solution and Jacobi polynomials, a Petrov–Galerkin approximation scheme is proposed and analyzed. Numerical experiments are presented which support the theoretical results, and demonstrate the accuracy and optimal convergence of the approximation method.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington (1964)
Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1-d)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2018)
Babuška, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 39(5):1512–1538 (2001/02)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1424 (2000)
Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev World. Preprint IRMAR 07-14, Université de Rennes 1 (2007)
Bernardi, C., Dauge, M., Maday, Y.: Polynomials in weighted Sobolev spaces: basics and trace liftings. Internal Report 92039, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris (1992)
Buades, A., Coll, B., Morel, J.M.:Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1):113–147 (2010). Reprint of “A review of image denoising algorithms, with a new one” [MR2162865]
Chen, H., Wang, H.: Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296, 480–498 (2016)
Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)
Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792–7804 (2009)
Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)
Ervin, V.J.: Regularity of the solution to fractional diffusion, advection, reaction equations. https://arxiv.org/abs/1911.03261 (2019)
Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)
Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)
Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65(1), 249–270 (2015)
Ginting, V., Li, Y.: On the fractional diffusion–advection–reaction equation in \({\mathbb{R}}\). Fract. Calc. Appl. Anal. 22(4), 1039–1062 (2019)
Gui, W., Babuška, I.: The \(h,\;p\) and \(h\)-\(p\) versions of the finite element method in \(1\) dimension. II. The error analysis of the \(h\)- and \(h\)-\(p\) versions. Numer. Math. 49(6), 613–657 (1986)
Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128(1), 1–41 (2004)
Hao, Z., Lin, G., Zhang, Z.: Error estimates of a spectral Petrov–Galerkin method for two-sided fractional reaction–diffusion equations. Appl. Math. Comput. 374, 125045 (2020)
Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral galerkin method for fractional advection–diffusion–reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)
Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations. Electron. J. Differ. Equ. 93, 1–21 (2019)
Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)
Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)
Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)
Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15(3), 383–406 (2012)
Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40(14), 5018–5034 (2017)
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. In: Proceedings of the International Conference on Boundary and Interior Layers—Computational and Asymptotic Methods (BAIL 2002), vol. 166, pp. 209–219 (2004)
Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35(8), 4103–4116 (2011)
Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine. 1996), Volume 378 of CISM Courses and Lectures, pp. 291–348. Springer, Vienna (1997)
Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)
Mao, Z., Em-Karniadakis, G.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56(1), 24–49 (2018)
Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)
Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)
Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)
Szegő, G.: Orthogonal polynomials. American Mathematical Society, Providence, R.I., 4th edition, 1975. American Mathematical Society, Colloquium Publications, vol. XXIII
Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220(2), 813–823 (2007)
Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)
Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51(2), 1088–1107 (2013)
Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)
Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E (3) 48(3), 1683–1694 (1993)
Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)
Zheng, X., Ervin, V.J., Wang, H.: Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Appl. Math. Comput. 361, 98–111 (2019)
Zheng, X., Ervin, V.J., Wang, H.: An indirect finite element method for variable-coefficient space-fractional diffusion equations and its optimal-order error estimates. Commun. Appl. Math. Comput. 2(1), 147–162 (2020)
Acknowledgements
This work was partially funded by the ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under Grants DMS-1620194 and DMS-2012291, and by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina. All data generated or analyzed during this study are included in this published article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zheng, X., Ervin, V.J. & Wang, H. Optimal Petrov–Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded Interval. J Sci Comput 86, 29 (2021). https://doi.org/10.1007/s10915-020-01366-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01366-y
Keywords
- Fractional diffusion equation
- Petrov–Galerkin
- Jacobi polynomials
- Spectral method
- Weighted Sobolev spaces