Abstract
In this paper, we consider numerical methods for Toeplitz-like linear systems arising from the one- and two-dimensional Riesz space fractional diffusion equations. We apply the Crank–Nicolson technique to discretize the temporal derivative and apply certain difference operator to discretize the space fractional derivatives. For the one-dimensional problem, the corresponding coefficient matrix is the sum of an identity matrix and a product of a diagonal matrix and a symmetric Toeplitz matrix. We transform the linear systems to symmetric linear systems and introduce symmetric banded preconditioners. We prove that under mild assumptions, the eigenvalues of the preconditioned matrix are bounded above and below by positive constants. In particular, the lower bound of the eigenvalues is equal to 1 when the banded preconditioner with diagonal compensation is applied. The preconditioned conjugate gradient method is applied to solve relevant linear systems. Numerical results are presented to verify the theoretical results about the preconditioned matrices and to illustrate the efficiency of the proposed preconditioners.
Similar content being viewed by others
References
Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1423 (2000)
Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)
Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8(12), 5096–5103 (2001)
Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)
Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Comput. 9(4), 766–771 (1988)
Chen, M.H., Deng, W.H., Wu, Y.J.: Superlinearly convergent algorithms for the two-dimensional space-time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)
Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71(2), 759–784 (2017)
Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)
Huang, F.H., Liu, F.W.: The space-time fractional diffusion equation with Caputo derivatives. J. Appl. Math. Comput. 19(1–2), 179 (2005)
Jin, X.Q.: Preconditioning Techniques for Toeplitz systems. Higher Education Press, Beijing (2010)
Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)
Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)
Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543–572 (2016)
Li, C., Deng, W.H.: A new family of difference schemes for space fractional advection diffusion equation. Adv. Appl. Math. Mech. 9(2), 282–306 (2017)
Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Cambridge (2015)
Lin, F.R., Liu, W.D.: The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation. J. Comput. Appl. Math. 363, 77–91 (2020)
Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)
Lin, X.L., Ng, M.K., Sun, H.W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38(4), 1580–1614 (2017)
Lin, X.L., Ng, M.K., Sun, H.W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT Numer. Math. 58(3), 729–748 (2018)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)
Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017)
Mortici, C.: Methods and algorithms for approximating the Gamma function and related functions. A survey. Part I: Asymptotic series. Ann. Acad. Rom. Sci. Ser. Math. Appl. 6, 173 (2014)
Pan, J.Y., Ke, R.H., Ng, M.K., Sun, H.W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)
Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)
Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)
Tadjeran, C., Meershaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006)
Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)
Wang, H., Wang, K., Sircar, T.: A direct \(\cal{O}(N\log ^{2}N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095–8104 (2010)
Acknowledgements
We thank the referees for providing valuable comments and suggestions, which are very helpful for us to improve our paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research was supported by National Natural Science Foundation of China (11771265), key research projects of general universities in Guangdong Province (2019KZDXM034), basic research and applied basic research projects in Guangdong Province (Projects of Guangdong-Hong Kong-Macao Center for Applied Mathematics) (2020B1515310018), Natural Science Foundation of Guangdong Provincial Department of Education (2018KQNCX156, 2020KZDZX1147).
Rights and permissions
About this article
Cite this article
She, ZH., Lao, CX., Yang, H. et al. Banded Preconditioners for Riesz Space Fractional Diffusion Equations. J Sci Comput 86, 31 (2021). https://doi.org/10.1007/s10915-020-01398-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01398-4