Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High-Order Bound-Preserving Finite Difference Methods for Incompressible Wormhole Propagation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we continue our effort in Guo et al. ( J Comput Phys 406:109219, 2020) for developing high-order bound-preserving (BP) finite difference (FD) methods. We will construct high-order BP FD schemes for the incompressible wormhole propagation. Wormhole propagation is used to describe the phenomenon of channel evolution of acid and the increase of porosity in carbonate reservoirs during the acidization of carbonate reservoirs. In wormhole propagation, the important physical properties of acid concentration and porosity involve their boundness between 0 and 1 and the monotonically increasing porosity. High-order BP FD methods can maintain the high-order accuracy and keep these important physical properties, simultaneously. The main idea is to choose a suitable time step size in the BP technique and construct a consistent flux pair between the pressure and concentration equations to deduce a ghost equation. Therefore, we can apply the positivity-preserving technique to the original and the deduced equations. Moreover, the high-order accuracy is attained by the parametrized flux limiter. Numerical experiments are presented to verify the high-order accuracy and effectiveness of the given scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akanni, O.O., Nasr-El-Din, H.A., Gusain, D.: A computational Navier-Stokes fluid-dynamics-simulation study of wormhole propagation in carbonate-matrix acidizing and analysis of factors influencing the dissolution process. SPE J. 22, 187962 (2017)

    Article  Google Scholar 

  2. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  3. Chuenjarern, N., Xu, Z., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes. J. Comput. Phys. 378, 110–128 (2019)

    Article  MathSciNet  Google Scholar 

  4. Douglas, J., Jr., Roberts, J.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41, 441–459 (1983)

    Article  MathSciNet  Google Scholar 

  5. Du, J., Wang, C., Qian, C., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41, B250–B273 (2019)

    Article  MathSciNet  Google Scholar 

  6. Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 395, 489–510 (2019)

    Article  MathSciNet  Google Scholar 

  7. Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44, 1933–1949 (1998)

    Article  Google Scholar 

  8. Garder, A.O., Jr., Peaceman, D.W., Pozzi, A.L., Jr.: Numerical calculation of multidimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4, 683 (1964)

    Article  Google Scholar 

  9. Gottlieb, S., Ketcheson, D., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MathSciNet  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  11. Guo, H., Liu, X., Yang, Y.: High-order bound-preserving finite difference methods for miscible displacements in porous media. J. Comput. Phys. 406, 109219 (2020)

    Article  MathSciNet  Google Scholar 

  12. Guo, H., Tian, L., Xu, Z., et al.: High-order local discontinuous Galerkin method for simulating wormhole propagation. J. Comput. Appl. Math. 350, 247–261 (2019)

    Article  MathSciNet  Google Scholar 

  13. Guo, H., Yang, Y.: Bound-preserving discontinuous galerkin method for compressible miscible displacement in porous media. SIAM J. Sci. Comput. 39, A1969–A1990 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hoefner, M.L., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34, 45–54 (1988)

    Article  Google Scholar 

  15. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  16. Jiang, Y., Xu, Z.: Parametrized maximum principle preserving limiter for finite difference weno schemes solving convection-dominated diffusion equations. SIAM J. Sci. Comput. 35(6), A2524–A2553 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kou, J., Sun, S., Wu, Y.: Mixed finite element-based fully conservative methods for simulating wormhole propagation. Comput. Methods Appl. Mech. Eng. 298, 279–302 (2016)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Rui, H.: Characteristic block-centered finite difference method for simulating incompressible wormhole propagation. Comput. Math. Appl. 73, 2171–2190 (2017)

    Article  MathSciNet  Google Scholar 

  19. Li, X., Rui, H.: Block-centered finite difference method for simulating compressible wormhole propagation. J. Sci. Comput. 74, 1115–1145 (2018)

    Article  MathSciNet  Google Scholar 

  20. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  21. Maheshwari, P., Balakotaiah, V.: 3D Simulation of carbonate acidization with HCl: comparison with experiments. In: SPE Production and Operations Symposium, Society of Petroleum Engineers (2013)

  22. Panga, M.K., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51, 3231–3248 (2005)

    Article  Google Scholar 

  23. Peaceman, D.W., Rachford, H.H., Jr.: Numerical calculation of multidimensional miscible displacement. Soc. Pet. Eng. J. 2, 471 (1962)

    Article  Google Scholar 

  24. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  Google Scholar 

  25. Shu, C.W.: Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. Technical Report (1997)

  26. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  27. Wei, W., Varavei, A., Sepehrnoori, K.: Modeling and analysis on the effect of two-phase flow on wormhole propagation in carbonate acidizing. SPE J. 22, 186111 (2017)

    Article  Google Scholar 

  28. Wu, Y., Salama, A., Sun, S.: Parallel simulation of wormhole propagation with the Darcy-Brinkman-Forchheimer framework. Comput. Geotech. 69, 564–577 (2015)

    Article  Google Scholar 

  29. Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, A583–A608 (2015)

    Article  MathSciNet  Google Scholar 

  30. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83, 310–331 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Xu, Z., Yang, Y., Guo, H.: High-order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes. J. Comput. Phys. 390, 323–341 (2019)

    Article  MathSciNet  Google Scholar 

  32. Yu, F., Guo, H., Chuenjarern, N., Yang, Y.: Conservative local discontinuous Galerkin method for compressible miscible displacements in porous media. J. Sci. Comput. 73, 1249–1275 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhao, C., Hobbs, B.E., Hornby, P., et al.: Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Meth. Geomech. 32, 1107–1130 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by Graduate Innovation Projects grant YCX2020114. The second author was supported by NSF grant DMS-1818467. The last author was supported by the Fundamental Research Funds for the Central Universities 20CX05011A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, Y. & Guo, H. High-Order Bound-Preserving Finite Difference Methods for Incompressible Wormhole Propagation. J Sci Comput 89, 7 (2021). https://doi.org/10.1007/s10915-021-01619-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01619-4

Keywords

Mathematics Subject Classifications (2000)