Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For the solution of the one dimensional cubic nonlinear Schrödinger equation on the torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies on the fast Fourier transform with a complexity of \({\mathcal {O}}(N\log N)\) operations per time step, where N denotes the degrees of freedom in the spatial discretization. We prove that the new scheme provides an \({\mathcal {O}}(\tau ^{\frac{3}{2}\gamma -\frac{1}{2}-\varepsilon }+N^{-\gamma })\) error bound in \(L^2\) for any initial data in \(H^\gamma \), \(\frac{1}{2}<\gamma \le 1\), where \(\tau \) denotes the temporal step size. Numerical examples illustrate this convergence behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

  3. Faou, E.: Geometric Numerical Integration and Schrödinger Equations. European Mathematical Society Publishing House, Zürich (2012)

    Book  Google Scholar 

  4. Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT 40, 735–744 (2000)

    Article  MathSciNet  Google Scholar 

  5. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  6. Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)

    Article  MathSciNet  Google Scholar 

  7. Li, B., Wu, Y.: A full discrete low-regularity integrator for the 1D period cubic nonlinear Schrödinger equation. Numer. Math. 149, 151–183 (2021)

    Article  MathSciNet  Google Scholar 

  8. Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21, 725–765 (2021)

    Article  MathSciNet  Google Scholar 

  11. Ostermann, A., Rousset, F., Schratz, K.: Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces, accepted for publication in J. Eur. Math. Soc.

  12. Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comp. 43, 21–27 (1984)

    Article  MathSciNet  Google Scholar 

  13. Wu, Y., Yao, F.: A first-order Fourier integrator for the nonlinear Schrödinger equation on \({\mathbb{T}}\) without loss of regularity, accepted for publication in Math. Comp.

Download references

Funding

This research is supported by the NSFC key project under the Grant Number 11831003, and by NSFC under the Grant Number 11971356. The second author also acknowledges financial support by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostermann, A., Yao, F. A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation. J Sci Comput 91, 9 (2022). https://doi.org/10.1007/s10915-022-01786-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01786-y

Keywords

Mathematics Subject Classification