Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the discontinuous Galerkin finite element method for the Steklov eigenvalue problem arising in inverse scattering. We present a complete error estimates including the a refined priori error estimate and the a posteriori error estimate, and prove the reliability and efficiency of the a posteriori error estimators for eigenfunctions up to higher order terms, and we also analyze the reliability of estimators for eigenvalues. Moreover, we carry out the numerical experiments in adaptive fashion which together with theoretical analysis show that our method reach the optimal convergence order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76(4), 1737–1763 (2016)

    Article  MathSciNet  Google Scholar 

  2. Liu, J., Sun, J., Turner, T.: Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79, 1814–1831 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bi, H., Zhang, Y., Yang, Y.: Two-grid discretizations and a local finite element scheme for a non-selfadjiont Stekloff eigenvalue problem. Comput. Math. Appl. 79, 1895–1913 (2020)

    Article  MathSciNet  Google Scholar 

  4. Zhang, Y., Bi, H., Yang, Y.: A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering. Int. J. Comput. Math. 97, 1412–2430 (2019)

    Article  MathSciNet  Google Scholar 

  5. Yang, Y., Zhang, Y., Bi, H.: Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46(6), 81 (2020)

    Article  MathSciNet  Google Scholar 

  6. Meng, J., Mei, L.: Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. Appl. Math. Comput. 381, 125307 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation, Thechnical Reprot LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  8. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods, Thoery, Computation and Applications. Springer-Verlag, Berlin (1999)

    Google Scholar 

  9. Wihler, T.P.: Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains. PhD thesis, Swiss Federal Institute of Technology Zurich, 2002. Diss. ETH No.14973

  10. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer-Verlag, New York (2008)

    MATH  Google Scholar 

  11. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. SIAM, Theory and Implementation (2008)

    Book  Google Scholar 

  12. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations, Technical Report, 381, CERMICS (2009)

  13. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Method on Polygonal and Polyhedral Meshes. Springer, New York (2010)

    MATH  Google Scholar 

  14. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, New York (2012)

    Book  Google Scholar 

  15. Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equation. Appl. Math. Lett. 18, 833–841 (2005)

    Article  MathSciNet  Google Scholar 

  16. Antonietti, P., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195, 3483–3503 (2006)

    Article  MathSciNet  Google Scholar 

  17. Zeng, Y., Wang, F.: A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Appl. Math. 62(3), 243–267 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, L., Xiong, C., Wu, H., Luo, F.: A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math. 45, 2623–2646 (2019)

    Article  MathSciNet  Google Scholar 

  19. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)

    Article  MathSciNet  Google Scholar 

  20. Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204, 317–333 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wihler, T.P., Rivi\(\grave{e}\)re, B.: Discontinuous Galerkin methods for second-order elliptic PDE with low-regularity solutions. J. Sci. Comput. 46, 151–165 (2011)

  22. Ern, A., Guermond, J.-L.: Finite Elements II, Galerkin Approximation, Elliptic and Mixed PDEs. Springer, Cham (2021)

    Book  Google Scholar 

  23. Brenner, S.C.: Poincar–Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  Google Scholar 

  24. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  Google Scholar 

  25. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16(4), 365–378 (2000)

    Article  MathSciNet  Google Scholar 

  26. Perugia, I., Schötzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72, 1179–1214 (2003)

    Article  MathSciNet  Google Scholar 

  27. Houston, P., Schötzau, D., Wihler, T.P.: Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17, 33–62 (2007)

    Article  MathSciNet  Google Scholar 

  28. Nitsche, J.: \(\ddot{U}\)ber ein Variationsprinzip zur L\(\ddot{o}\)sung von Dirichlet-Problemen bei Verwendung von Teilr\(\ddot{a}\)umen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971)

    Article  MathSciNet  Google Scholar 

  29. Oden, J., Babu\(\breve{s}\)ka, I., Baumann, C.: A discontinous hp finite element method for diffusion problems. J. Comp. Phys. 146, 491–591 (1998)

  30. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49, 1761–1787 (2011)

    Article  MathSciNet  Google Scholar 

  31. Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of Laplace equation. Math. Comp. 71(240), 1371–1403 (2001)

    Article  MathSciNet  Google Scholar 

  32. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer-Verlag, Berlin, Heidelberg, New York (1981)

  33. Savare, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152, 176–201 (1998)

    Article  MathSciNet  Google Scholar 

  34. Garau, E.M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31, 914–946 (2011)

    Article  MathSciNet  Google Scholar 

  35. Grisvard, P.: Singularities in Boundary Value Problems. Springer-Verlag, New York (1992)

    MATH  Google Scholar 

  36. H. Bi, X. Zhang, Y. Yang, The nonconforming Crouzeix-Raviart element approximation and two-grid discretizations for the elastic eigenvalue problem, Available at arXiv:2112.09934v1 [math.NA] 18 Dec. 2021 (J. Comput. Math., accepted)

  37. Dunford, N., Schwartz, J.T.: Linear Operators, Vol.2: Spectral Theory, Selfadjoint operators in Hilbert space, Interscience, New York, (1963)

  38. Babu\(\breve{s}\)ka, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part I). Handbook of Numerical Analysis, vol. 2, pp. 641–787. Elsevier Science Publishers, North-Holand (1991)

  39. Cl\(\acute{e}\)ment, P.: Approximation by finite element functions using local regularization. Rev. Franc. Automat. Inform. Rech. Operat. 9, Analyse numer., No. R-2 77-84 (1975)

  40. Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Compt. 54, 483–493 (1990)

    Article  Google Scholar 

  41. Verf\(\ddot{u}\)rth, R.: A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley, Chichester, (1996)

  42. Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes. SIAM J. Numer. Anal. 45, 1701–1722 (2007)

    Article  MathSciNet  Google Scholar 

  43. Yang, Y., Zhang, Y., Bi, H.: A type of adaptive \(C^{0}\) non-conforming finite element method for the Helmholtz transmission eigenvalue problem. Comput. Methods Appl. Mech. Engrg 360, 112697 (2020)

    Article  MathSciNet  Google Scholar 

  44. Chen, L.: iFEM, an innovative finite element methods package in MATLAB. University of California at Irvine, Irvine, CA, Tech. Rep. (2009)

    Google Scholar 

Download references

Acknowledgements

We cordially thank the editor and the referees for their valuable comments and suggestions which led to the improvement of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidu Yang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Projects supported by the National Natural Science Foundation of China (Grant Nos. 11761022, 11561014), the Scientific Research Foundation of Guizhou University of Finance and Economics (No. 2020XYB10), and the Science and Technology Foundation of Guizhou Province (No. ZK[2021]012)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Bi, H. & Yang, Y. The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering. J Sci Comput 91, 20 (2022). https://doi.org/10.1007/s10915-022-01787-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01787-x

Keywords

Mathematics Subject Classification