Abstract
In this paper, we study the discontinuous Galerkin finite element method for the Steklov eigenvalue problem arising in inverse scattering. We present a complete error estimates including the a refined priori error estimate and the a posteriori error estimate, and prove the reliability and efficiency of the a posteriori error estimators for eigenfunctions up to higher order terms, and we also analyze the reliability of estimators for eigenvalues. Moreover, we carry out the numerical experiments in adaptive fashion which together with theoretical analysis show that our method reach the optimal convergence order.
Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76(4), 1737–1763 (2016)
Liu, J., Sun, J., Turner, T.: Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79, 1814–1831 (2019)
Bi, H., Zhang, Y., Yang, Y.: Two-grid discretizations and a local finite element scheme for a non-selfadjiont Stekloff eigenvalue problem. Comput. Math. Appl. 79, 1895–1913 (2020)
Zhang, Y., Bi, H., Yang, Y.: A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering. Int. J. Comput. Math. 97, 1412–2430 (2019)
Yang, Y., Zhang, Y., Bi, H.: Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46(6), 81 (2020)
Meng, J., Mei, L.: Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. Appl. Math. Comput. 381, 125307 (2020)
Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation, Thechnical Reprot LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods, Thoery, Computation and Applications. Springer-Verlag, Berlin (1999)
Wihler, T.P.: Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains. PhD thesis, Swiss Federal Institute of Technology Zurich, 2002. Diss. ETH No.14973
Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer-Verlag, New York (2008)
Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. SIAM, Theory and Implementation (2008)
Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations, Technical Report, 381, CERMICS (2009)
Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Method on Polygonal and Polyhedral Meshes. Springer, New York (2010)
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, New York (2012)
Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equation. Appl. Math. Lett. 18, 833–841 (2005)
Antonietti, P., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195, 3483–3503 (2006)
Zeng, Y., Wang, F.: A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Appl. Math. 62(3), 243–267 (2017)
Wang, L., Xiong, C., Wu, H., Luo, F.: A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math. 45, 2623–2646 (2019)
Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)
Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204, 317–333 (2007)
Wihler, T.P., Rivi\(\grave{e}\)re, B.: Discontinuous Galerkin methods for second-order elliptic PDE with low-regularity solutions. J. Sci. Comput. 46, 151–165 (2011)
Ern, A., Guermond, J.-L.: Finite Elements II, Galerkin Approximation, Elliptic and Mixed PDEs. Springer, Cham (2021)
Brenner, S.C.: Poincar–Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)
Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)
Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16(4), 365–378 (2000)
Perugia, I., Schötzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72, 1179–1214 (2003)
Houston, P., Schötzau, D., Wihler, T.P.: Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17, 33–62 (2007)
Nitsche, J.: \(\ddot{U}\)ber ein Variationsprinzip zur L\(\ddot{o}\)sung von Dirichlet-Problemen bei Verwendung von Teilr\(\ddot{a}\)umen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971)
Oden, J., Babu\(\breve{s}\)ka, I., Baumann, C.: A discontinous hp finite element method for diffusion problems. J. Comp. Phys. 146, 491–591 (1998)
Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49, 1761–1787 (2011)
Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of Laplace equation. Math. Comp. 71(240), 1371–1403 (2001)
Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer-Verlag, Berlin, Heidelberg, New York (1981)
Savare, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152, 176–201 (1998)
Garau, E.M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31, 914–946 (2011)
Grisvard, P.: Singularities in Boundary Value Problems. Springer-Verlag, New York (1992)
H. Bi, X. Zhang, Y. Yang, The nonconforming Crouzeix-Raviart element approximation and two-grid discretizations for the elastic eigenvalue problem, Available at arXiv:2112.09934v1 [math.NA] 18 Dec. 2021 (J. Comput. Math., accepted)
Dunford, N., Schwartz, J.T.: Linear Operators, Vol.2: Spectral Theory, Selfadjoint operators in Hilbert space, Interscience, New York, (1963)
Babu\(\breve{s}\)ka, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part I). Handbook of Numerical Analysis, vol. 2, pp. 641–787. Elsevier Science Publishers, North-Holand (1991)
Cl\(\acute{e}\)ment, P.: Approximation by finite element functions using local regularization. Rev. Franc. Automat. Inform. Rech. Operat. 9, Analyse numer., No. R-2 77-84 (1975)
Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Compt. 54, 483–493 (1990)
Verf\(\ddot{u}\)rth, R.: A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley, Chichester, (1996)
Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes. SIAM J. Numer. Anal. 45, 1701–1722 (2007)
Yang, Y., Zhang, Y., Bi, H.: A type of adaptive \(C^{0}\) non-conforming finite element method for the Helmholtz transmission eigenvalue problem. Comput. Methods Appl. Mech. Engrg 360, 112697 (2020)
Chen, L.: iFEM, an innovative finite element methods package in MATLAB. University of California at Irvine, Irvine, CA, Tech. Rep. (2009)
Acknowledgements
We cordially thank the editor and the referees for their valuable comments and suggestions which led to the improvement of this paper.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Projects supported by the National Natural Science Foundation of China (Grant Nos. 11761022, 11561014), the Scientific Research Foundation of Guizhou University of Finance and Economics (No. 2020XYB10), and the Science and Technology Foundation of Guizhou Province (No. ZK[2021]012)
Rights and permissions
About this article
Cite this article
Li, Y., Bi, H. & Yang, Y. The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering. J Sci Comput 91, 20 (2022). https://doi.org/10.1007/s10915-022-01787-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01787-x
Keywords
- Steklov eigenvalue
- Discontinuous Galerkin method
- A priori error estimate
- A posteriori error estimate
- Adaptive algorithm