Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving Elliptic PDE’s Using Polynomial Splines on Curved Triangulations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It is shown how the polynomial splines defined on the curved triangulations introduced in our recent paper Larry L. Schumaker, A. Yu. (Comput. Aided Geom. Design. 92:102050, 2022) can be used to solve elliptic PDEs defined on curved planar domains. The approach is similar to that used in Larry L. Schumaker (J. Sci. Comp. 80:1369–1394, 2019), but does not require immersing the domain of interest in a larger computational domain. The methods are easy to implement using Bernstein–Bézier representations of the splines, and the solutions are computed by solving certain penalized least-squares problems. A number of numerical examples are included to illustrate the performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Apprich, C., Höllig, K., Hörner, J., Reif, U.: Collocation with WEB-splines. Adv. Comput. Math. 42, 823–842 (2016)

    Article  MathSciNet  Google Scholar 

  2. Barrett, J.W., Eilliot, C.M.: Finite element approximation of the Dirichet problem using the boundary penalty method. Numer. Math. 49, 343–366 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bochev, P., Gunzburger, M.: Least-squares finite element methods, In: Int. Congress Mathematicians. Vol. III, Eur. Math. Soc. Zürich, pp. 1137–1162 (2006)

  4. Bochev, P.B., Gunzburger, M.D.: Least-squares Finite Element Methods. In: Applied Mathematical Sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  5. Clark, B.W., Anderson, D.C.: The penalty boundary method. Finite Elem. Anal. Des. 39, 387–401 (2003)

    Article  Google Scholar 

  6. Davydov, O., Kostin, G., Saeed, A.: Polynomial finite element method for domains enclosed by piecewise conics. Comput. Aided Geom. Design 45, 48–72 (2016)

    Article  MathSciNet  Google Scholar 

  7. Davydov, O., Saeed, A.: \(C^1\) quintic splines on domains encosed by piecewise conics and numerical solution of fully nonlinear elliptic equations. J. Appl. Num. Anal. 116, 172–183 (2017)

    MATH  Google Scholar 

  8. Eason, E.D.: A review of least-squares methods for solving partial differential equations. Int. J. Numer. Methods Engrg. 10, 1021–1046 (1976)

    Article  MathSciNet  Google Scholar 

  9. Eason, E.D., Mote, C.D.: Solution of non-linear boundary value problems by discrete least squares. Int. J. Numer. Methods Engrg. 11, 641–652 (1977)

    Article  MathSciNet  Google Scholar 

  10. Höllig, K.: Finite Element Methods with B-splines. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  11. Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  Google Scholar 

  12. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  13. Schumaker, L.L.: Spline Functions: Computational Methods. SIAM, Philadelphia (2015)

    Book  Google Scholar 

  14. Schumaker, L.L.: Solving elliptic PDE’s on domains with curved boundaries with an immersed penalized boundary method. J. Sci. Comp. 80(3), 1369–1394 (2019)

    Article  MathSciNet  Google Scholar 

  15. Schumaker, L.L., Yu, A.: Approximation by polynomial splines on curved triangulations. Comput. Aided Geom. Design 92, 102050 (2022)

    Article  MathSciNet  Google Scholar 

  16. Serbin, S.M.: Computational investigations of least-squares type methods for the approximate solution of boundary value problems. Math. Comp. 29, 777–793 (1975)

    Article  MathSciNet  Google Scholar 

  17. Wachspress, E.L.: A Rational Finite Element Basis. Academic Press, New York (2012)

    MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Schumaker.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumaker, L.L. Solving Elliptic PDE’s Using Polynomial Splines on Curved Triangulations. J Sci Comput 92, 74 (2022). https://doi.org/10.1007/s10915-022-01932-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01932-6

Keywords