Abstract
In this paper, we propose a semi-discrete first-order low regularity exponential-type integrator (LREI) for the “good” Boussinesq equation. It is shown that the method is convergent linearly in the space \(H^r\) for solutions belonging to \(H^{r+p(r)}\) where \(0\le p(r)\le 1\) is non-increasing with respect to r, which means less additional derivatives might be needed when the numerical solution is measured in a more regular space. Particularly, the LREI presents the first-order accuracy in \(H^{r}\) with no assumptions of additional derivatives when \(r>5/2\). This is the first time to propose a low regularity method which achieves the optimal first-order accuracy without loss of regularity for the GB equation. The convergence is confirmed by extensive numerical experiments.







Similar content being viewed by others
Data Availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Adams, R.A., Fournier, J.J.: Sobolev Spaces. Elsevier, New York (2003)
Ambrosio, V.: Periodic solutions for a pseudo-relativistic Schrödinger equation. Nonlinear Anal. 120, 262–284 (2015)
Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87(311), 1227–1254 (2018)
Bényi, Á., Oh, T.: The Sobolev inequality on the torus revisited. Publ. Math. Debr. 83(3), 359–374 (2013)
Bourgain, J., Li, D.: On an endpoint Kato-Ponce inequality. Differ. Integral. Equ. 27(11/12), 1037–1072 (2014)
Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 7, 55–108 (1872)
Bratsos, A.G.: A second order numerical scheme for the solution of the one-dimensional Boussinesq equation. Numer. Algorithms 46(1), 45–58 (2007)
Cheng, K., Feng, W., Gottlieb, W., Wang, C.: A Fourier pseudospectral method for the “good’’ Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)
El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good’’ Boussinesq equation. Appl. Numer. Math. 45(2–3), 161–173 (2003)
Farah, L.: Local solutions in Sobolev spaces with negative indices for the “good’’ Boussinesq equation. Commun. Partial Differ. Equ. 34(1), 52–73 (2009)
Farah, L., Scialom, M.: On the periodic “good’’ Boussinesq equation. Proc. Am. Math. Soc. 138(3), 953–964 (2010)
Frutos, J.. De., Ortega, T., Sanz-Serna, J.: Pseudospectral method for the “good’’ Boussinesq equation. Math. Comput. 57(195), 109–122 (1991)
Hofmanová, M., Schratz, K.: An exponential-type integrator for the KdV equation. Numer. Math. 136(4), 1117–1137 (2017)
Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, vol. 19. Cambridge University Press, Cambridge (1997)
Kahane, J.P.: Some Random Series of Functions. Cambridge University Press, Cambridge (1993)
Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)
Kirby, J.T.: Nonlinear, dispersive long waves in water of variable depth. Delaware Univ. Newark Center Appl. Coastal Research, Technical report (1996)
Kishimoto, N.: Sharp local well-posedness for the “good’’ Boussinesq equation. J. Differ. Equ. 254(6), 2393–2433 (2013)
Knoller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)
Lambert, F., Musette, M., Kesteloot, E.: Soliton resonances for the good Boussinesq equation. Inverse Probl. 3(2), 275 (1987)
Li, B., Wu, Y.: A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation. Numer. Math. 149(1), 151–183 (2021)
Li, B., Wu, Y.: An unfiltered low-regularity integrator for the KdV equation with solutions below \(H^1\). arXiv:2206.09320 (2022)
Li, H., Su, C.: Low regularity exponential-type integrators for the “good’’ Boussinesq equation. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drac081
Li, L.: On Kato-Ponce and fractional Leibniz. Rev. Math. Iberoam. 35(1), 23–100 (2019)
Manoranjan, V., Mitchell, A., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5(4), 946–957 (1984)
Manoranjan, V., Ortega, T., Sanz-Serna, J.: Soliton and antisoliton interactions in the “good’’ Boussinesq equation. J. Math. Phys. 29(9), 1964–1968 (1988)
Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)
Oh, S., Stefanov, A.: Improved local well-posedness for the periodic “good’’ Boussinesq equation. J. Differ. Equ. 254(10), 4047–4065 (2013)
Ortega, T., Sanz-Serna, J.: Nonlinear stability and convergence of finite-difference methods for the “good’’ Boussinesq equation. Numer. Math. 58(1), 215–229 (1990)
Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21(3), 725–765 (2021)
Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)
Ostermann, A., Su, C.: Two exponential-type integrators for the “good’’ Boussinesq equation. Numer. Math. 143(3), 683–712 (2019)
Ostermann, A., Su, C.: A lawson-type exponential integrator for the Korteweg-de Vries equation. IMA J. Numer. Anal. 40(4), 2399–2414 (2020)
Ostermann, A., Wu, Y., Yao, F.: A second-order low-regularity integrator for the nonlinear Schrödinger equation. Adv. Cont. Discr. Mod. 91(1), 1–14 (2022)
Rousset, F., Schratz, K.: A general framework of low regularity integrators. SIAM J. Numer. Anal. 59(3), 1735–1768 (2021)
Schratz, K., Wang, Y., Zhao, X.: Low-regularity integrators for nonlinear Dirac equations. Math. Comput. 90(327), 189–214 (2021)
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (2016)
Su, C., Yao, W.: A Deuflhard-type exponential integrator fourier pseudo-spectral method for the “good’’ Boussinesq equation. J. Sci. Comput. 83(1), 1–19 (2020)
Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis (No. 106). American Mathematical Soc, Washington (2006)
Tatlock, B., Briganti, R., Musumeci, R.E., Brocchini, M.: An assessment of the roller approach for wave breaking in a hybrid finite-volume finite-difference Boussinesq-type model for the surf-zone. Appl. Ocean Res. 73, 160–178 (2018)
Varlamov, V.: Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete Contin. Dyn. Syst. 7(4), 675–702 (2001)
Wang, H., Esfahani, A.: Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation. Nonlinear Anal. 89, 267–275 (2013)
Wu, Y., Yao, F.: A first-order Fourier integrator for the nonlinear Schrödinger equation on \(\mathbb{T} \) without loss of regularity. Math. Comput. 91(335), 1213–1235 (2022)
Wang, Y., Zhao, X.: A symmetric low-regularity integrator for nonlinear Klein-Gordon equation. Math. Comput. 91(337), 2215–2245 (2022)
Wu, Y., Zhao, X.: Optimal convergence of a second order low-regularity integrator for the KDV equation. IMA J. Numer. Anal. 42(4), 3499–3528 (2022)
Wu, Y., Zhao, X.: Embedded exponential-type low-regularity integrators for KDV equation under rough data. BIT Numer. Math. 62(3), 1049–1090 (2022)
Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “good’’ Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)
Funding
This work was supported by the NSFC 12201342.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
In this section, we present a first-order operator splitting scheme based on the equivalent form (3.3) of the GB equation. The operator splitting methods for the time integration of (3.3) are based on the splitting
where \( X_1 (u)=i\langle \partial _x^2 \rangle u, \quad X_2(u)=-iB\left( \frac{1}{4}(u+ \overline{u})^2+(at+b)(u + \overline{u})\right) \), and the solutions of the subproblems
For the linear subproblem, the associated evolution operator is given by
To integrate the nonlinear subequation, writing \(\omega =\omega _1+i\omega _2\) with \(\omega _1, \omega _2\in \mathbb {R}\), we are led to
which implies
Thus one obtains
which gives that
Hence we get
Hence, the first-order Lie-Trotter splitting scheme reads as
and the numerical solution \(z^n\) and \(z_t^n\) can be recovered by (3.26). Furthermore, high-order splitting methods can be constructed correspondingly.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, H., Su, C. A Semi-discrete First-Order Low Regularity Exponential Integrator for the “good” Boussinesq Equation Without Loss of Regularity. J Sci Comput 95, 74 (2023). https://doi.org/10.1007/s10915-023-02201-w
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-023-02201-w
Keywords
- “good” Boussinesq equation
- Low regularity
- Error estimate
- First-order integrator
- Without loss of regularity