Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Semi-discrete First-Order Low Regularity Exponential Integrator for the “good” Boussinesq Equation Without Loss of Regularity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a semi-discrete first-order low regularity exponential-type integrator (LREI) for the “good” Boussinesq equation. It is shown that the method is convergent linearly in the space \(H^r\) for solutions belonging to \(H^{r+p(r)}\) where \(0\le p(r)\le 1\) is non-increasing with respect to r, which means less additional derivatives might be needed when the numerical solution is measured in a more regular space. Particularly, the LREI presents the first-order accuracy in \(H^{r}\) with no assumptions of additional derivatives when \(r>5/2\). This is the first time to propose a low regularity method which achieves the optimal first-order accuracy without loss of regularity for the GB equation. The convergence is confirmed by extensive numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, R.A., Fournier, J.J.: Sobolev Spaces. Elsevier, New York (2003)

    MATH  Google Scholar 

  2. Ambrosio, V.: Periodic solutions for a pseudo-relativistic Schrödinger equation. Nonlinear Anal. 120, 262–284 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87(311), 1227–1254 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bényi, Á., Oh, T.: The Sobolev inequality on the torus revisited. Publ. Math. Debr. 83(3), 359–374 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Li, D.: On an endpoint Kato-Ponce inequality. Differ. Integral. Equ. 27(11/12), 1037–1072 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 7, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  7. Bratsos, A.G.: A second order numerical scheme for the solution of the one-dimensional Boussinesq equation. Numer. Algorithms 46(1), 45–58 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, K., Feng, W., Gottlieb, W., Wang, C.: A Fourier pseudospectral method for the “good’’ Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)

    MathSciNet  MATH  Google Scholar 

  9. El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good’’ Boussinesq equation. Appl. Numer. Math. 45(2–3), 161–173 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Farah, L.: Local solutions in Sobolev spaces with negative indices for the “good’’ Boussinesq equation. Commun. Partial Differ. Equ. 34(1), 52–73 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Farah, L., Scialom, M.: On the periodic “good’’ Boussinesq equation. Proc. Am. Math. Soc. 138(3), 953–964 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Frutos, J.. De., Ortega, T., Sanz-Serna, J.: Pseudospectral method for the “good’’ Boussinesq equation. Math. Comput. 57(195), 109–122 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Hofmanová, M., Schratz, K.: An exponential-type integrator for the KdV equation. Numer. Math. 136(4), 1117–1137 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, vol. 19. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  15. Kahane, J.P.: Some Random Series of Functions. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  16. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Kirby, J.T.: Nonlinear, dispersive long waves in water of variable depth. Delaware Univ. Newark Center Appl. Coastal Research, Technical report (1996)

  18. Kishimoto, N.: Sharp local well-posedness for the “good’’ Boussinesq equation. J. Differ. Equ. 254(6), 2393–2433 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Knoller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Lambert, F., Musette, M., Kesteloot, E.: Soliton resonances for the good Boussinesq equation. Inverse Probl. 3(2), 275 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Li, B., Wu, Y.: A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation. Numer. Math. 149(1), 151–183 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Li, B., Wu, Y.: An unfiltered low-regularity integrator for the KdV equation with solutions below \(H^1\). arXiv:2206.09320 (2022)

  23. Li, H., Su, C.: Low regularity exponential-type integrators for the “good’’ Boussinesq equation. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drac081

    Article  Google Scholar 

  24. Li, L.: On Kato-Ponce and fractional Leibniz. Rev. Math. Iberoam. 35(1), 23–100 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Manoranjan, V., Mitchell, A., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5(4), 946–957 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Manoranjan, V., Ortega, T., Sanz-Serna, J.: Soliton and antisoliton interactions in the “good’’ Boussinesq equation. J. Math. Phys. 29(9), 1964–1968 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Oh, S., Stefanov, A.: Improved local well-posedness for the periodic “good’’ Boussinesq equation. J. Differ. Equ. 254(10), 4047–4065 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Ortega, T., Sanz-Serna, J.: Nonlinear stability and convergence of finite-difference methods for the “good’’ Boussinesq equation. Numer. Math. 58(1), 215–229 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21(3), 725–765 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Ostermann, A., Su, C.: Two exponential-type integrators for the “good’’ Boussinesq equation. Numer. Math. 143(3), 683–712 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Ostermann, A., Su, C.: A lawson-type exponential integrator for the Korteweg-de Vries equation. IMA J. Numer. Anal. 40(4), 2399–2414 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Ostermann, A., Wu, Y., Yao, F.: A second-order low-regularity integrator for the nonlinear Schrödinger equation. Adv. Cont. Discr. Mod. 91(1), 1–14 (2022)

    Google Scholar 

  35. Rousset, F., Schratz, K.: A general framework of low regularity integrators. SIAM J. Numer. Anal. 59(3), 1735–1768 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Schratz, K., Wang, Y., Zhao, X.: Low-regularity integrators for nonlinear Dirac equations. Math. Comput. 90(327), 189–214 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (2016)

    MATH  Google Scholar 

  38. Su, C., Yao, W.: A Deuflhard-type exponential integrator fourier pseudo-spectral method for the “good’’ Boussinesq equation. J. Sci. Comput. 83(1), 1–19 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis (No. 106). American Mathematical Soc, Washington (2006)

    Google Scholar 

  40. Tatlock, B., Briganti, R., Musumeci, R.E., Brocchini, M.: An assessment of the roller approach for wave breaking in a hybrid finite-volume finite-difference Boussinesq-type model for the surf-zone. Appl. Ocean Res. 73, 160–178 (2018)

    Google Scholar 

  41. Varlamov, V.: Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete Contin. Dyn. Syst. 7(4), 675–702 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Wang, H., Esfahani, A.: Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation. Nonlinear Anal. 89, 267–275 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Wu, Y., Yao, F.: A first-order Fourier integrator for the nonlinear Schrödinger equation on \(\mathbb{T} \) without loss of regularity. Math. Comput. 91(335), 1213–1235 (2022)

    MATH  Google Scholar 

  44. Wang, Y., Zhao, X.: A symmetric low-regularity integrator for nonlinear Klein-Gordon equation. Math. Comput. 91(337), 2215–2245 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Wu, Y., Zhao, X.: Optimal convergence of a second order low-regularity integrator for the KDV equation. IMA J. Numer. Anal. 42(4), 3499–3528 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Wu, Y., Zhao, X.: Embedded exponential-type low-regularity integrators for KDV equation under rough data. BIT Numer. Math. 62(3), 1049–1090 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “good’’ Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the NSFC 12201342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Su.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we present a first-order operator splitting scheme based on the equivalent form (3.3) of the GB equation. The operator splitting methods for the time integration of (3.3) are based on the splitting

$$\begin{aligned} \partial _{t}u =X_1(u)+X_2(u), \end{aligned}$$

where \( X_1 (u)=i\langle \partial _x^2 \rangle u, \quad X_2(u)=-iB\left( \frac{1}{4}(u+ \overline{u})^2+(at+b)(u + \overline{u})\right) \), and the solutions of the subproblems

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}\nu (t,x)=X_1(\nu (t,x)),\\&\nu (0,x)=\nu _0(x), \quad x\in \mathbb {T}, \quad t>0, \end{aligned}\right. \quad \left\{ \begin{aligned}&\partial _{t}\omega (t,x) =X_2(\omega (t,x)),\\&\omega (0,x)=\omega _0(x), \quad x\in \mathbb {T}, \quad t>0. \end{aligned}\right. \end{aligned}$$

For the linear subproblem, the associated evolution operator is given by

$$\begin{aligned} \nu (t, \cdot )=\varPhi _{X_1}^t(\nu _0)=\textrm{e}^{it\langle \partial _x^2 \rangle }\nu _0. \end{aligned}$$

To integrate the nonlinear subequation, writing \(\omega =\omega _1+i\omega _2\) with \(\omega _1, \omega _2\in \mathbb {R}\), we are led to

$$\begin{aligned} i\partial _t(\omega _1+i\omega _2)=B\left[ \omega _1^2+2(at+b)\omega _1\right] , \end{aligned}$$

which implies

$$\begin{aligned} \partial _t\omega _1= 0,\quad -\partial _t\omega _2=B\left[ \omega _1^2+2(at+b)\omega _1\right] . \end{aligned}$$

Thus one obtains

$$\begin{aligned} \omega _1(t)=\omega _1(0):=\omega _1^0,\quad -\partial _t\omega _2=B\left[ (\omega _1^0)^2+2(at+b)\omega _1^0\right] , \end{aligned}$$

which gives that

$$\begin{aligned} \omega _2(t)=\omega _2^0-Bt(\omega _1^0)^2-aBt^2\omega _1^0-2bBt\omega _1^0, \quad \omega _2^0:=\omega _2(0). \end{aligned}$$

Hence we get

$$\begin{aligned} \omega (t)&=\omega _1(t)+i\omega _2(t)=\omega _1^0+i\left[ \omega _2^0-Bt(\omega _1^0)^2- aBt^2\omega _1^0-2bBt\omega _1^0\right] \\&=\omega _0-itB\left[ \frac{1}{4}\left( \omega _0+\overline{\omega _0}\right) ^2+ (\frac{at}{2}+b)\left( \omega _0+\overline{\omega _0}\right) \right] \\&:=\varPhi _{X_2}^t(\omega _0). \end{aligned}$$

Hence, the first-order Lie-Trotter splitting scheme reads as

$$\begin{aligned} u^{n+1}=\varPhi ^{\tau }(u^n)=\varPhi ^{\tau }_{X_1}(\varPhi ^{\tau }_{X_2}(u^n)), \quad u^0=u(0,x), \end{aligned}$$

and the numerical solution \(z^n\) and \(z_t^n\) can be recovered by (3.26). Furthermore, high-order splitting methods can be constructed correspondingly.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Su, C. A Semi-discrete First-Order Low Regularity Exponential Integrator for the “good” Boussinesq Equation Without Loss of Regularity. J Sci Comput 95, 74 (2023). https://doi.org/10.1007/s10915-023-02201-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02201-w

Keywords

Mathematics Subject Classification