Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A \(C^1\)-Conforming Arbitrary-Order Two-Dimensional Virtual Element Method for the Fourth-Order Phase-Field Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a two-dimensional conforming virtual element method for the fourth-order phase-field equation. Our proposed numerical approach to the solution of this high-order phase-field (HOPF) equation relies on the design of an arbitrary-order accurate, virtual element space with \(C^{1}\) global regularity. Such regularity is guaranteed by taking the values of the virtual element functions and their full gradient at the mesh vertices as degrees of freedom. Attaining high-order accuracy requires also edge polynomial moments of the trace of the virtual element functions and their normal derivatives. In this work, we detail the scheme construction, and prove its convergence by deriving error estimates in different norms. A set of representative test cases allows us to assess the behavior of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No new data were specifically generated for this work. The meshes utilized for this study and reported in the final appendix are the property of Los Alamos National Laboratory and can be made available on reasonable request.

References

  1. Adak, D., Mora, D., Natarajan, S., Silgado, A.: A virtual element discretization for the time dependent Navier-Stokes equations in stream-function formulation. ESAIM: Math. Model. Numer. Anal. 55(5), 2535–2566 (2021)

    MathSciNet  Google Scholar 

  2. Adams, R.A. and Fournier, J.J.F.: Sobolev spaces. Pure and Applied Mathematics. Academic Press, 2 edition (2003)

  3. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    MathSciNet  Google Scholar 

  4. Antonietti, P.F., Manzini, G., Mazzieri, I., Mourad, H.M., Verani, M.: The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis. Int. J. Numer. Methods Eng. 122, 934–971 (2021)

    MathSciNet  Google Scholar 

  5. Antonietti, P.F., Manzini, G., Scacchi, S., Verani, M.: A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations. Math. Models Methods Appl. Sci. 31(14), 2825–2853 (2021)

    MathSciNet  Google Scholar 

  6. Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79(7), 2021–2034 (2020)

    MathSciNet  Google Scholar 

  7. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968)

    Google Scholar 

  8. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The non-conforming virtual element method. ESAIM: Math. Model. Numer. 50(3), 879–904 (2016)

    MathSciNet  Google Scholar 

  9. Bartezzaghi, A., Dedè, L., Quarteroni, A.: Isogeometric analysis of high order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 295, 446–469 (2015)

    MathSciNet  Google Scholar 

  10. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    MathSciNet  Google Scholar 

  11. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    MathSciNet  Google Scholar 

  12. Beirão da Veiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 782–799 (2014)

    MathSciNet  Google Scholar 

  13. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: Math. Model. Numer. Anal. 49(2), 577–599 (2015)

    MathSciNet  Google Scholar 

  14. Bell, K.: A refined triangular plate bending finite element. Int. J. Numer. Meth. Eng. 1(1), 101–122 (1969)

    Google Scholar 

  15. Berrone, S., Borio, A., Manzini, G.: SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 340, 500–529 (2018)

    MathSciNet  Google Scholar 

  16. Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)

    MathSciNet  Google Scholar 

  17. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217, 77–95 (2012)

    MathSciNet  Google Scholar 

  18. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    MathSciNet  Google Scholar 

  19. Brenner, S.C. and Scott, R.: The mathematical theory of finite element methods, volume 15. Springer Science & Business Media (2008)

  20. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    MathSciNet  Google Scholar 

  21. Chen, C., Huang, X., Wei, H.: \({H^m}\)-conforming virtual elements in arbitrary dimension. SIAM J. Numer. Anal. 60(6), 3099–3123 (2022)

    MathSciNet  Google Scholar 

  22. Chinosi, C., Marini, L.D.: Virtual element method for fourth order problems: \(L^2\)-estimates. Comput. Math. Appl. 72(8), 1959–1967 (2016)

    MathSciNet  Google Scholar 

  23. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (2002)

  24. Dassi, F., Mascotto, L.: Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput. Math. Appl. 75(9), 3379–3401 (2018)

    MathSciNet  Google Scholar 

  25. Dittmann, M., Aldakheel, F., Schulte, J., Schmidt, F., Krüger, M., Wriggers, P., Hesch, C.: Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids. Comput. Methods Appl. Mech. Eng. 361, 112730 (2020)

  26. Egger, A., Pillai, U., Agathos, K., Kakouris, E., Chatzi, E., Aschroft, I.A., Triantafyllou, S.P.: Discrete and phase field methods for linear elastic fracture mechanics: a comparative study and state-of-the-art review. Appl. Sci. 9(12), 2436 (2019)

    Google Scholar 

  27. Elliott, C.M., French, D.A., Milner, F.A.: A second-order splitting method for the Cahn-Hilliard equation. Numer. Math. 54(5), 575–590 (1989)

    MathSciNet  Google Scholar 

  28. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    MathSciNet  Google Scholar 

  29. Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29(3), 573–594 (2009)

    MathSciNet  Google Scholar 

  30. Goswami, S., Anitescu, C., Rabczuk, T.: Adaptive fourth-order phase field analysis using deep energy minimization. Theor. Appl. Fract. Mech. 107, 102527 (2020)

    Google Scholar 

  31. Grisvard, P.: Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985)

  32. Grisvard, P.: Singularities in boundary value problems and exact controllability of hyperbolic systems. Springer (1992)

  33. Hu, J., Lin, T. and Wu, Q.: A construction of \({C}^r\) conforming finite element spaces in any dimension. Preprint arXiv:2103.14924 (2021)

  34. Ma, R., Sun, W.C.: FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials. Comput. Methods Appl. Mech. Eng. 362, 112781 (2020)

    MathSciNet  Google Scholar 

  35. Mascotto, L.: Ill-conditioning in the virtual element method: stabilizations and bases. Numer. Methods Part. Differ. Equs. 34(4), 1258–1281 (2018)

    MathSciNet  Google Scholar 

  36. Mascotto, M.: The role of stabilization in the virtual element method: a survey. Comput. Math. Appl. 151, 244–251 (2023)

    MathSciNet  Google Scholar 

  37. Miehe, C., Hofacker, M., Schänzel, L.M., Aldakheel, F.: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput. Methods Appl. Mech. Eng. 294, 486–522 (2015)

    MathSciNet  Google Scholar 

  38. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    MathSciNet  Google Scholar 

  39. Moutsanidis, G., Kamensky, D., Chen, J.S., Bazilevs, Y.: Hyperbolic phase field modeling of brittle fracture: part II-immersed IGA-RKPM coupling for air-blast-structure interaction. J. Mech. Phys. Solids 121, 114–132 (2018)

    MathSciNet  Google Scholar 

  40. Rahimi, M.N., Moutsanidis, G.: Modeling dynamic brittle fracture in functionally graded materials using hyperbolic phase field and smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 401, 115642 (2022)

    MathSciNet  Google Scholar 

  41. Rezaei, S., Harandi, A., Brepols, T., Reese, S.: An anisotropic cohesive fracture model: advantages and limitations of length-scale insensitive phase-field damage models. Eng. Fract. Mech. 261, 108177 (2022)

    Google Scholar 

  42. Stogner, R.H., Carey, G.F., Murray, B.T.: Approximation of Cahn-Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with \(C^1\) elements. Int. J. Numer. Methods Eng. 76(5), 636–661 (2008)

    Google Scholar 

  43. Strang, G.: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 689–710. Elsevier (1972)

  44. Svolos, L., Bronkhorst, C.A., Waisman, H.: Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method. J. Mech. Phys. Solids 137, 103861 (2020)

    MathSciNet  Google Scholar 

  45. Svolos, L., Mourad, H.M., Bronkhorst, C.A., Waisman, H.: Anisotropic thermal-conductivity degradation in the phase-field method accounting for crack directionality. Eng. Fract. Mech. 245, 107554 (2021)

    Google Scholar 

  46. Svolos, L., Mourad, H.M., Manzini, G., Garikipati, K.: A fourth-order phase-field fracture model: Formulation and numerical solution using a continuous/discontinuous Galerkin method. J. Mech. Phys. Solids 165, 104910 (2022)

    MathSciNet  Google Scholar 

  47. Vignollet, J., May, S., De Borst, R., Verhoosel, C.V.: Phase-field models for brittle and cohesive fracture. Meccanica 49(11), 2587–2601 (2014)

    MathSciNet  Google Scholar 

  48. Wu, J.-Y., Nguyen, V.P. , Nguyen, C.T. , Sutula, D., Sinaie, S., and Bordas, S.P.A.: Chapter One - Phase-field modeling of fracture. In Stéphane P. A. Bordas and Daniel S. Balint, editors, Advances in AppliedMechanics, vol. 53, pp. 1–183. Elsevier (2020)

  49. Yan, C., Wang, X., Huang, D., Wang, G.: A new 3D continuous-discontinuous heat conduction model and coupled thermomechanical model for simulating the thermal cracking of brittle materials. Int. J. Solids Struct. 229, 111123 (2021)

    Google Scholar 

  50. Zhang, S.: A family of differentiable finite elements on simplicial grids in four space dimensions. Math. Numer. Sin. 38(3), 309–324 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory under project number 20220129ER. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This work is registered as the Los Alamos Technical Report LA-UR-21-31995.

Funding

Laboratory Directed Research and Development (LDRD) program operated at Los Alamos National Laboratory, Grant N. 20220129ER. All the Authors have no financial interests

Author information

Authors and Affiliations

Authors

Contributions

All the Authors equally contributed to this work.

Corresponding author

Correspondence to Gianmarco Manzini.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Mesh Data

Appendix A: Mesh Data

See Tables 1, 2, 3, 4.

Table 1 Mesh data and number of degrees of freedom for the VEM with polynomial degree \(k=2,3,4\) for the family of smoothly remapped quadrilateral meshes
Table 2 Mesh data and number of degrees of freedom for the VEM with polynomial degree \(k=2,3,4\) for the family of randomized quadrilateral meshes
Table 3 Mesh data and number of degrees of freedom for the VEM with polynomial degree \(k=2,3,4\) for the family of smoothly remapped hexagons
Table 4 Mesh data and number of degrees of freedom for the VEM with polynomial degree \(k=2,3,4\) for the family of nonconvex octagons

For completeness, we report the data corresponding to the four mesh families that we used in the calculation of Sectionsec6:numerical:results. The four tables report the following data:

  • \(n\): refinement level;

  • \(N_{P}\), \(N_{F}\), \(N_{V}\): number of elements, edges, and vertices;

  • \(h\): mesh size parameter;

  • \(\#\text {dofs}_{k=\ell }\): total number of degrees of freedom for the VEM with polynomial degree \(\ell =2,3,4\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, D., Manzini, G., Mourad, H.M. et al. A \(C^1\)-Conforming Arbitrary-Order Two-Dimensional Virtual Element Method for the Fourth-Order Phase-Field Equation. J Sci Comput 98, 38 (2024). https://doi.org/10.1007/s10915-023-02409-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02409-w

Keywords

Mathematics Subject Classification