Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Entropy-Production-Rate-Preserving Algorithms for a Hydrodynamical Model of Binary Fluids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a hydrodynamic model for nonisothermal, incompressible binary fluids that incorporates buoyancy effects using the Boussinesq approximation. This model adheres to the generalized Onsager principle, ensuring both volume preservation for each fluid phase and a positive entropy production rate under thermodynamically consistent boundary conditions, maintaining overall thermodynamic consistency. We then develop a set of second-order numerical algorithms that preserve both volume and entropy production rates to solve the model in finite domains, subject to physically appropriate boundary conditions. By implementing an efficient adaptive time-stepping strategy, we perform several numerical simulations that validate the accuracy and second-order convergence of the schemes. These simulations successfully capture Rayleigh-Bénard convection in binary fluids and the interfacial dynamics between immiscible fluids under the influence of temperature gradients, buoyancy, and interfacial forces, demonstrating the accuracy and practical utility of the model and the numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author on reasonable request.

References

  1. Guo, Z.L., Lin, P.: A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. J. Fluid Mech. 766, 226–271 (2015)

    Article  MathSciNet  Google Scholar 

  2. Morton, E.G., Debra, A.P., Jorge, V.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Methods Appl. Sci. 6(6), 815–831 (1996)

    Article  MathSciNet  Google Scholar 

  3. Du, Q., Nicolaides, R.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  Google Scholar 

  4. Du, Q., Liu, C., Wang. X.Q.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

  5. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. 454, 2617–2654 (1998)

    Article  MathSciNet  Google Scholar 

  6. Teigen, K., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230(2), 375–393 (2011)

    Article  MathSciNet  Google Scholar 

  7. Yang, X.F., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333(4), 104–127 (2017)

    Article  MathSciNet  Google Scholar 

  8. Yue, P.T., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  Google Scholar 

  9. Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Meth. Appl. Mech. Eng. 310, 77–97 (2016)

    Article  MathSciNet  Google Scholar 

  10. Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  Google Scholar 

  11. Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  Google Scholar 

  12. Yang, X.F., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yang, X.F., Zhao, J., He, X.M.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  Google Scholar 

  14. Cahn, J. W., Hilliard, J. E.: Free energy of a non-uniform system. i. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

  15. Liu, P., Wu, S., Liu, C.: Non-isothermal electrokinetics: energetic variational approach. Commun. Math. Sci. 16(5), 1451–1463 (2017)

    Article  MathSciNet  Google Scholar 

  16. Francesco, D., Liu, C.: Non-isothermal general Ericksen-Leslie system: derivation, analysis and thermodynamic consistency. Arch. Ration. Mech. Anal. 231(2), 637–717 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gong, Y, Z., Zhao, J., Wang, Q.: Second Order Fully Discrete Energy Stable Methods on Staggered Grids for Hydrodynamic Phase Field Models of Binary Viscous Fluids. SIAM J. Sci. Comput. 40(2), B528–B553 (2018)

  18. Li, J., Zhao, J., Wang, Q.: Energy and entropy preserving numerical approximations of thermodynamically consistent crystal growth models. J. Comput. Phys. 328, 202–220 (2019)

    Article  MathSciNet  Google Scholar 

  19. Chang, Q., Iwan, J., Alexander, D.: Application of the lattice Boltzmann method to two-phase Rayleigh Benard convection with a deformable interface. J. Comput. Phys. 212(2), 473–489 (2006)

    Article  MathSciNet  Google Scholar 

  20. Sun, S. W., Li, J., Zhao, J., Wang, Q.: Structure-Preserving numerical approximations to a non-isothermal hydrodynamic model of binary fluid flows. J. Sci. Comput 83(3) (2020)

  21. Wu, K., Huang, F., Shen, J.: A new class of higher-order decoupled schemes for the incompressible Navier-Stokes equations and applications to rotating dynamics. J. Comput. Phys. 458, 111097 (2022)

  22. Favier, B., Purseed, J., Duchemin, L.: Rayleigh Benard convection with a melting boundary. J. Fluid Mech. 858, 437–473 (2019)

    Article  MathSciNet  Google Scholar 

  23. Wen, B., Goluskin, D., Doering, C.: Steady Rayleigh Benard convection between no-slip boundaries. J. Fluid Mech. 933, R4 (2022)

    Article  Google Scholar 

  24. Watanable, T.: Flow pattern and heat transfer rate in Rayleigh Benard convection. Phys. Fluids 16, 972 (2004)

    Article  Google Scholar 

  25. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  26. Tang, T., Wu, X., Yang, J.: Arbitrarily high order and fully discrete extrapolated RK SAV/DG Schemes for Phase-field gradient flows. J. Sci. Comput. 93, 38 (2022)

    Article  MathSciNet  Google Scholar 

  27. Yu, H.J., Yang, X.F.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)

    Article  MathSciNet  Google Scholar 

  28. Cheng, Q., Liu, C., Shen, J.: A new lagrange multiplier approach for gradient flows. Comput. Methods. Appl. Mech. Eng. 367, 113070 (2020)

  29. Li, X., Qiao, Z. H., Wang. C.: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math. Comput. 90(327), 171–188 (2021)

  30. Shan, X.: Simulation of Rayleigh-Benard convection using a lattice boltzmann method. Phys. Rev. E 59(3), 2780–2788 (1997)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Z., Qiao, Z.H.: An adaptive time-stepping strategy for the Cahn-Hilliard equation. CiCP 11(4), 1261–1278 (2012)

    Article  MathSciNet  Google Scholar 

  32. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44), 6011–6045 (2016)

    MathSciNet  Google Scholar 

  33. Zhao, J., Li, H., Wang, Q., Yang, X.F.: Decoupled energy stable schemes for a phase field model of three-phase incompressible viscous fluid flow. J. Sci. Comput. 70, 1367–1389 (2017)

    Article  MathSciNet  Google Scholar 

  34. Leslie, F.M.: Theory of flow phenomena in liquid crystals. Liq. Cryst. 4, 1–81 (1979)

    Google Scholar 

  35. Wang, Q., Forest, M.G., Zhou, R.: A kinetic theory for solutions of nonhomogeneous nematic liquid crystalline polymers with density variations. J. Fluids Eng. 126(2), 180–188 (2004)

    Article  Google Scholar 

  36. Li, J., Wang, Q.: A class of conservative phase field models for multiphase fluid flows. J. Appl. Mech. 81, 2 (2014)

    Article  Google Scholar 

  37. Bertei, A., Tellini, B., Mauri, R.: Dynamic transition of dendrite orientation in the diffusive spinodal decomposition of binary mixtures under a thermal gradient. Chem. Eng. Sci. 203, 450–463 (2019)

    Article  Google Scholar 

  38. DeGroot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  39. Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)

    Article  MathSciNet  Google Scholar 

  40. Gong, Y.Z., Zhao, J., Wang, Q.: Linear second order in time energy stable schemes for hydrodynamic models of binary mixtures based on a spatially pseudospectral approximation. Adv. Comput. Math. 44, 1573–1600 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Shouwen Sun’s work is partially supported by Key Scientific Research Project of Colleges and Universities in Henan Province, China (No.22A110018) and an award of National Natural Science Foundation of China (No.12101387). Qi Wang’s research is partially supported by NSF OIA-2242812 and an SC GEAR award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Wang, Q. Entropy-Production-Rate-Preserving Algorithms for a Hydrodynamical Model of Binary Fluids. J Sci Comput 101, 53 (2024). https://doi.org/10.1007/s10915-024-02693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02693-0

Keywords